Inconventional Searches at the LHC

Karri Folan DiPetrillo - Fermilab Rising Stars in Experimental Particle Physics

22 September 2021

We all know the Standard Model (SM) isn't the complete picture of the universe

Dark matter exists & is likely a particle Hierarchy puzzle suggests new particles @TeV scale Growing list of anomalies (LHCb, muon g-2)

My goal: discover Beyond the Standard Model (BSM) particles at the Large Hadron Collider

High energy colliders

Exciting & effective way to discover new particles

Long history of success! 1985 - W and Z - SppS 1995 - Top Quark - Tevatron 2012 - Higgs Boson - LHC

The LHC phase transition

Run 1		Run 2							Run 3								HL-LHC			
2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028		2036	
7/8 25	TeV fb ⁻¹	13 TeV 135 fb ⁻¹								13.6 TeV 150 fb ⁻¹							14 TeV 3000 fb ⁻¹			
		inc	crease in energy								increase in lumino							sity, L		
										for a fixed mass: probing sma Cross Section x Branching Ra								aller atio		
		mass reach ~ energy									significance					~ √L or L				

What this means for LHC physicists

Unprecedented LHC luminosity = unique opportunity Standard Model: access rare processes & precision measurements Powerful (indirect) probes of new physics

Paradigm shift for BSM searches: new emphasis on signatures which may have evaded detection Low cross sections, low efficiency, and/or challenging backgrounds Or we simply haven't looked before

My opinion: if we're producing BSM particles at the LHC we need to make sure we don't miss them

What have we looked for?

LHC searches typically assume new heavy particles <u>decay promptly</u> to <u>high momentum SM particles</u> dark matter particles are stable & non-interacting

Historically this has been a good assumption

eg. W, Z, higgs, and top lifetimes $< 10^{-20}$ s cannot resolve decay from point of production

Detector Design

ATLAS & <u>CMS</u>: cylindrical detectors, designed to identify & measure all stable Standard Model particles produced in LHC collisions

Detector Design

What is uncovered?

Signatures with <u>unconventional tracks</u>

New long-lived particles (LLPs) that result in displaced decays Or new particles that result in low momentum (soft) decay products

Unconventional Motivation

Event though these signatures are "unconventional" displaced and soft tracks are well motivated

Lifetime

$$\tau^{-1} = \Gamma \sim y^2 \left(\frac{m}{M}\right)^n m$$

y - small couplings M ≫ m - hierarchy of scales eg. SM weak decays Momentum

$$p \sim \frac{\text{phase space}}{\text{N decay products}}$$

Lower mass mediators Small mass splittings High multiplicity of decay products

Commonly appear in your favorite Supersymmetry or hidden valley models

Unconventional Motivation

The examples I'll use are hidden valley scenarios

Diverse range of possible phenomenologies, experimental coverage = to be improved!

Major challenge: the trigger

Why can't you just modify your reconstruction? Need to make sure our events are saved to disk first!

2. LHC over produces collisions

~billion mostly soft collisions/second

~1/second is a higgs

1. Protons are composite particles

3. We cannot save all our collisions

Event size: 1-2 MB Produce: O(10) TB/s Limited by bandwidth & storage

The trigger: decides which ~1 in 10⁵ collisions we can keep High stakes decision made in real time

How the trigger works

Targets prompt high p_T objects in a two step process Level 1 (L1): coarse calorimeter & muon information High Level Trigger (HLT): refines & add limited tracking information

Works very well for Standard Model processes & prompt searches eg. higgs→ZZ*→2e2µ

What the trigger can't do (yet)

Consider: higgs $\rightarrow XX \rightarrow 4$ jets, where X is long-lived Difficult for trigger to distinguish from QCD background

Low efficiency when tracks are the most conspicuous feature!

So what can we do?

Run 2: Use existing triggers in most recent dataset

Run 3: Design new triggers with limited tracking information available

HL-LHC: Upgrade detector & trigger scheme

So what can we do?

Run 2: Use existing triggers in most recent dataset - soft-track example

Run 3: Design new triggers with limited tracking information available

HL-LHC: Upgrade detector & trigger scheme - *displaced-track example*

A soft track example

SUEPs = soft unclustered energy patterns Predicted in models with a dark QCD sector and large t'Hooft coupling Spherical event shape, large multiplicity of low momentum particles

Evades previous searches because final state particles aren't collimated into high p_T QCD-like jets

Considered impossible for LHC triggers by community

Bonus: dark QCD models have nice possibilities Dark matter = lightest baryon? Colorless top partner?

Turns out we were wrong

Existing triggers perform much better than expected All we needed to do was try!

This strategy applies to most models with unconventional signatures It's often good enough to do an analysis!

Turns out we were wrong

Bonus: In CMS we have an additional trick called "data scouting"

Data scouting leaves us with

O(10) billion background events and ~10k-100k signal events

Analysis strategy

Recover isotropic event shape by boosting into rest frame

Analysis strategy

Most powerful discriminant: track multiplicity

Run 2: First discovery potential for wide range of SUEP phase space!

A displaced track example

Motivation: higgs $\rightarrow XX \rightarrow 4b$ Well known blind spot in LHC coverage for $c\tau_X \sim 1$ cm

Future prospects

In the near term: both ATLAS and CMS have ongoing efforts to systematically improve coverage with existing capabilities

In the longer term: major upgrades to our detector and trigger CMS will have tracking information at Level 1 for the first time!

CMS Tracker p_T-module Concept

Only readout hits compatible with $p_T > 2$ GeV particles (stubs)

At Level 1 reconstruct all <u>prompt</u> tracks with $p_T > 2 \text{ GeV}$

Exciting possibilities

In the works: possibility to extend the track trigger to larger displacements (few cm)

Displaced tracking at Level 1 could improve sensitivity to Br(h) by several orders of magnitude

We expect new physics at LHC energy scale, but haven't seen it yet

New physics could be hiding in existing & future datasets Well-motivated models could result in unconventional track signatures that may have evaded standard triggers & search strategies

The future is bright!

New interest in pushing boundaries of ATLAS/CMS capabilities to find overlooked physics

BACKUP SLIDES

Connecting detector and lifetime

Long-lived particle decay position is sampled from an exponential distribution

Mean distance travelled = $\beta\gamma c\tau$

 $c\tau = distance metric$ ~ 30cm for $\tau = 1$ nanosecond

Lorentz boost $\beta \gamma = p/M$. Ranges from ~ 0.8 or 0.9 for heavy particles to ~30 for light ones

SM Particle Lifetime

Inclusive displaced jets

Hadronic decay in Tracker

For hadronic LLP decays: story begins with flagship analysis (from 2020) Analysis strategy: Select events with ≥1 displaced vertex reconstructed from tracks associated to a pair of jets

2012.01581

Z+displaced jets

Hadronic decay in Tracker

New! EXO-20-003

Analysis goal: follow up inclusive displaced jets specifically targeting light LLP decays to b-jets

Trigger on Zh production less boosted than inclusive analysis

Require ≥ two displaced jets no displaced vertex required to retain efficiency to tertiary vertices

Results 3.5 ± 1.8 events expected 3 observed Variables used to tag displaced jets based on EXO-16-003

Dark QCD phenomenology

Easier if we just turn one knob at a time!

- fraction of dark matter
 Semi-visible jets
- 2. dark meson lifetime Emerging Jets

- 3. shower shape
- Soft Unclustered Energy Patterns

SUEP phase space

Large t'Hooft coupling $\lambda = \alpha^2_{dark} \cdot n_{colors}$ Wide angle, high momentum radiation

> M_{mediator} > M_{dark hadrons} High multiplicity final state

Dark hadron momenta parameterized by Maxwell Boltzman with temperature, T

Focus on mediator masses O(100) GeV and up And dark hadron masses ~ 1 GeV

