

Muon g-2 experiment: first results and future prospects

Hannah Binney **Rising Stars in Experimental Physics** September 22, 2021

Fermilab U.S. DEPARTMENT OF Office of Science

The big result!

- data taking
- calculation to 4.2 σ

Anomalous magnetic moments

• A charged particle with intrinsic spin has a magnetic dipole moment

$$\overrightarrow{\mu} = g \frac{q}{2m} \overrightarrow{S}$$

- In a magnetic field, it precesses at the frequency $\omega = g \frac{qB}{2m}$
- Dirac equation predicts g = 2 for pointlike spin 1/2 particles
- Virtual particles result in corrections to g = 2

• $a \equiv \frac{g-2}{2}$, the anomalous magnetic moment

A test of the standard model

- Schwinger calculated first order QED correction X 2π
- Higher order QED
- Weak
- Hadronic
- Highest uncertainty for hadronic terms

[1] T. Aoyama et. al. The anomalous magnetic moment of the muon in the Standard Model (2020).

Source	Value (x 10-11) [1]	Error
QED	116,584,718.93	0.10
EW	153.6	1.0
HVP	6845	40
HLbL	92	18

Measuring a_{μ} : cyclotron and spin frequency

In the absence of an electric field, for a muon orbiting horizontally in a perpendicular magnetic field:

 a_{μ} (the anomalous

magnetic moment)

$$\omega_a \equiv \omega_s - \omega_c = -\left(\frac{g-2}{2}\right) \frac{eB}{m}$$

If g = 2Momentum Spin Magnetic

storage ring

Measuring a_{μ} : cyclotron and spin frequency

In the absence of an electric field, for a muon orbiting horizontally in a perpendicular magnetic field:

 a_{μ} (the anomalous

magnetic moment)

Quantities to measure

Spin

If g > 2

Magnetic storage ring

Free induction decay signal

Measuring $\tilde{\omega}_{p}$

10000

9000

8000 F

7000

6000

5000

NMR probe

Trolley

7 9/22/2021 Hannah Binney I Rising Stars Symposium

- The magnetic field B is measured using the Larmor precession frequency of free protons, $\omega_{\rm p}$
- Nuclear magnetic resonance (NMR) probes measure ω_p
- Trolley w region
- Fixed probes are used to interpolate the field between trolley runs
- Beam distribution measured by straw tracking detectors

• Trolley with 17 probes periodically measures field in storage

$$\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$$

Measuring ω_a : parity violation in the weak decay $\overline{\nu}_{\mu}$ Muons decay into electrons through the weak interaction, exhibiting parity violation ν_e W^+ Highest energy positrons emitted preferentially in e^+

- direction of muon spin

Momentum Spin

Measuring ω_{α} : parity violation in the weak decay

- Muons decay into electrons through the weak interaction, exhibiting parity violation
- Highest energy positrons emitted preferentially in direction of muon spin

9/22/2021 Hannah Binney I Rising Stars Symposium

Measuring ω_{α} : parity violation in the weak decay

- certain energy threshold
- 5 parameter fit function:

Beam injection

• A polarized muon beam is injected into a magnetic storage ring

Beam injection

9/22/2021 Hannah Binney I Rising Stars Symposium 12

Beam injection

 Superconducting inflector creates a field-free region so the muons can enter the storage ring

Beam storage

- Superconducting inflector creates a field-free region so the muons can enter the storage ring
- Three magnetic kickers deflect muons onto their proper orbit

Beam storage

- Superconducting inflector creates a field-free region so the muons can enter the storage ring
- Three magnetic kickers deflect muons onto their proper orbit
- Electrostatic quadrupoles provide vertical focusing

Calorimeters

- Decay positrons have lower momentum than muons, curl inward
- (time, energy) of positrons detected in 24 calorimeters
 - Composed of 54 PbF₂ Cherenkov crystals attached to silicon photomultipliers

Fermilab UNIVERSITY of WASHINGTON

Inflector

Quads

Kickers

 μ + beam TO

9/22/2021 Hannah Binney I Rising Stars Symposium

 $a_{\mu} \propto \frac{f_{\text{clock}} \omega_a^m (1 + C_e + C_p + C_{ml} + C_{pa})}{f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_a)}$ ase

at on

Muon loss correction

Run1 results: the tip of the iceberg BNL and FNAL results have similar uncertainties Run2, 3, 4, 5, . • So far we have only analyzed ~10% of data we have taken and ~5% of data we expect to take • Uncertainty in Run1 was statistics-dominated, but we will be pushing that uncertainty lower • Want to improve some of the larger sources of systematic uncertainty Last update: 2021-06-27 07:51 ; Total = 12.89 (xBNL)

9/22/2021 Hannah Binney I Rising Stars Symposium 21

Improving pileup systematic

- Two positron hits can be measured by the calorimeters as a single event
- One event with E1+E2 has different phase and asymmetry than two events with E1, E2
- A pileup correction is applied to avoid bias to ω_a
- One of the largest Run1 systematic errors on ω_a
- Crystal hits have a known energydependent time resolution
- Info incorporated to improve discrimination of positron events arriving close in time

Muon g-2: the tip of the iceberg?

- Motivation...
- To achieve our full precision goal
- For precision muon experiments
- For precision tests of the standard model
- For improvements and updates to the theory

Hannah Binney I Rising Stars Symposium 9/22/2021 24

Hannah Binney I Rising Stars Symposium 9/22/2021 25

The current spin on a_{μ}

Muon g-2 theory initiative

Components of a_{μ} **measurement**

- Need to measure both ω_a and B to high precision
- B measured using Larmor precession frequency of the free proton, ω_p

$$a_{\mu} = \frac{\omega_a}{\tilde{\omega}_p} \frac{g_e \ \mu_p \ m_\mu}{2 \ \mu_e \ m_e}$$

To measure! Known from other experiments

	Relative error (ppb)	Experiment
g_e	0.00026	Quantum electron cyclotron. Hanneke et al. 2008.
μ_e / μ_p	3.0	Hydrogen spectroscopy. Winkler et al. 1972.
m_{μ}/m_{e}	22	Muonium hyperfine splitting. Liu et al. 1999.
$\omega_a / \tilde{\omega}_p$	140	Fermilab $g-2$

Fermilab beamline

- 8 GeV protons hit target, producing pions
- Pions near 3.11 GeV selected
- Pions decay into muons
- Muons near maximum pion energy (3.094 GeV) selected to create polarized muon beam (M2/M3)

M1

- Muons separated from protons in delivery ring
- Muon beam arrives in g-2 storage ring

Mu2e Mu2e Farget Hall Detecto Delivery **Delivery Ring** Abort Lin Ring MC-1 Experimental Hall AP30 xperimenta M5 Shielding Wal MI-8 Line F23 F27 F2 Brian Prendel 5-16-14 drendel@fnal.gov U π^+ \mathbf{W}^{+} νμ

Precession in a real storage ring

Vertical confinement (focusing)

• Electrostatic quadrupoles Finite momentum spread

Desired precession term, but also... Vertical beam motion

"pitch correction"

$$\frac{d(\hat{\boldsymbol{\beta}}\cdot\mathbf{S})}{dt} = -\frac{e}{m}\mathbf{S}_{\perp}\cdot\left[a_{\mu}\right]$$

"Magic" momentum to cancel: $\gamma \sim 29.3 (p_{\mu} \sim 3.094 \text{ GeV})$

Combining it all...

$a_{\mu}^{(\text{FNAL})} = 116\,592\,040\,(51)_{\text{stat}}(18)_{\text{sys}}(3)_{\text{external}}$ (462 ppb)

Implications

Which models can still accommodate large deviation?

SUSY: MSSM, MRSSM

- MSugra...many other generic scenarios
- Bino-dark matter+some coannihil.+mass splittings
- Wino-LSP+specific mass patterns

Two-Higgs doublet model

• Type I, II, Y, Type X(lepton-specific), flavour-aligned

Lepto-quarks, vector-like leptons

• scenarios with muon-specific couplings to μ_L and μ_R

Simple models (one or two new fields)

- Mostly excluded
- light N.P. (ALPs, Dark Photon, Light $L_{\mu} L_{\tau}$)

Dominik Stöckinger

Muon (g - 2) and Physics Beyond the SM

D. Stöckinger, April 2021 APS meeting, https://...

LHC recast

7/8

Measuring the phase-momentum correlation

- Perform fit on each dataset to extract the phase
- Measurements show a correlation between phase and momentum of $10 \pm 1.6 \frac{\text{mrad}}{\% \, dp/p}$, in line with simulation

 $\neq 0!$ there is a correlation between phase and $d\langle p \rangle$ momentum

Measuring the momentum change

- Goal: measure whether high or low momentum muons are preferentially lost
- Use upstream collimators to bias the momentum distribution in the ring
 - Measure stored momentum distribution
 - Measured loss spectrum for each momentum distribution

Muon g-2 (FNAL) Preliminary 1/5 low 1/3 low 1/2 low 1/5 mid 1/2 high 1/3 high 1/5 high nomina 10 20 30 -20 -10 -30 Equilibrium radius [mm] 10 **Triples/CTAGs** 1/5 low •• *Muon g-2 (FNAL)* Preliminary 1/5 high 10 10 250 200 ЭU 100 100 300 Time [µs] **Fermilab**

Building a loss function

- Perform a fit using a set of equations, one per systematic run
- Loss function maps a momentum distribution to a measured number of lost muons
 - Assume analytical form of loss function

What is clustering?

- A positron hitting a calorimeter may deposit energy in multiple crystals
- Clustering gathers these crystal hits and sums the energy to give the positron energy
- Ideally: one cluster = one positron
- Pileup event: one cluster = more than one positron
- Less pileup to begin with means less pileup to subtract means lower pileup uncertainty
 - Strategy: improve clustering to reduce pileup

A. Fienberg thesis

Clustering improvement strategies: Improving time discrimination

- Calo channels have a known energydependent time resolution
- Timing of high-energy pulses known more precisely
- This information has not yet been incorporated into clustering algorithm ... an opportunity for improvement

Figure 16: Standard deviation of the time difference distribution versus effective energy for laser events read out by the same, or different, WFD5s. A single channel resolution can be obtained by using the dotted line and scaling the vertical axis by $1/\sqrt{2}$.

Performance of the Muon g-2 calorimeter and readout systems measured with test beam data (K.S. Khaw et. al.)

Measurement of $\sigma_{\Delta t}(E_{eff})$ for clusters

- Construct analogous time resolution function for existing clusters
- Incorporates timing resolution information and physics-based width of shower
- For each cluster, calculate the time difference of each crystal hit from the cluster time
- Bin as a function of effective energy $E_{eff} \equiv$

• Fit to
$$\sigma_{\Delta t} = \sqrt{2(A^2) + B^2/E_{eff}}$$

Implementation

• Replace Δt discriminator in algorithm with $\Delta t'$, which is weighted by time resolution

$$\Delta t'(E_{eff}) \equiv \frac{\Delta t}{\sigma_{\Delta t}(E_{eff})} = \frac{t_x - t_c}{\sigma_{\Delta t}(E_{eff})}$$

- t_{r} : time of hit in cluster
- t_c : cluster time

Events that would have originally been clustered together

Effect on energy spectrum

- Tested different $\Delta t'$ windows to see effect on energy spectrum
- Chose 6-8 $\Delta t'$ window based on limited distortion to energy spectrum
- This new clustering successfully reduces pileup by ~4x in the pileup region!

Ratio of $\Delta t'$ clusters to Δt (nominal) clusters

Energy [MeV]

Current clustering method

Clustering method used in the UW analysis uses time separation only

Implementation

• Replace Δt discriminator in algorithm with $\Delta t'$, which is weighted by time resolution

$$\Delta t'(E_{eff}) \equiv \frac{\Delta t}{\sigma_{\Delta t}(E_{eff})} = \frac{t_x - t_c}{\sigma_{\Delta t}(E_{eff})}$$

- t_{r} : time of hit in cluster
- t_c : cluster time

Events that would have originally been clustered together

If it's real, what are general take-home remarks (D. Stockinger)

- not obviously easy to explain in BSM
- a_u is a loop-induced, CP- and flavor-conserving, and chirality-flipping • - (an inclusive probe of essentially all particles/interactions)

 - The chirality flip implies interesting correlations to the muon mass
 - fundamental questions like Higgs/electroweak symmetry breaking and Yukawa couplings/connection to flavor structure/origin of three generations
- Many BSM scenarios *can give* large contributions, but • - they either involve a chirality flip enhancement (connections to deep physical properties)

 - or rather light, neutral new particles (dark matter?)
 - In virtually all cases there are strong parameter constraints from LHC, dark matter, LEP, flavor experiments etc.
- Typically one is forced into non-traditional parameter regions.

The deviation is larger than the SM EW contributions and hence "large" and

What might this mean ? (first "in general")

For us: strong motivation to push Rur goal.

We have almost met our systematics goal already
For other precision muon physics experiments: You might be onto something good!
Mu2e, MEG III, Mu3e, COMET, J-PARC g-2,
For precision physics: Sensitive experiment can really probe SM; go for it
LFUV, beta decays, MOLLER, EDMs, etc
For theorists: (no need to motivate them ...)

41 Citations to the PRL as of last night... A bit hard to briefly summarize 8

For us: strong motivation to push Run 3/4/4 analysis and obtain the full statistics

D. Hertzog

