Tools for Discovery at High Energy Colliders

Julia Gonski 22 September 2021

Rising Stars in Experimental Particle Physics Symposium University of Chicago

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

1

Outline

- Introduction to high energy collider physics
- 1. The ATLAS Experiment & the HL-LHC upgrade
 - LAr calorimeter readout electronics

2. Analysis innovation for new physics searches

- Long-lived particles
- Boosted topologies
- Anomaly detection
- 3. Future accelerator experiments
 - Forays into e+e-
- Conclusions & ideas

Outline

- Introduction to high energy collider physics
- 1. The ATLAS Experiment & the HL-LHC upgrade
 - LAr calorimeter readout electronics

2. Analysis innovation for new physics searches

- Long-lived particles
- Boosted topologies
- Anomaly detection
- 3. Future accelerator experiments
 - Forays into e+e-
- Conclusions & ideas

Collider Experiment Strategy

1. Large Hadron Collider: 27km proton synchrotron at CERN responsible for discovery and precise measurement of the Higgs boson

High Energy Accelerator

Collider Experiment Strategy

- 1. Large Hadron Collider: 27km proton synchrotron at CERN responsible for discovery and precise measurement of the Higgs boson
- 2. Lots of high energy data ($\sqrt{s} = 13 \text{ TeV}$, 139 fb⁻¹) + many physics goals \rightarrow improved analysis strategies to better explore available datasets

Collider Experiment Strategy

- 1. Large Hadron Collider: 27km proton synchrotron at CERN responsible for discovery and precise measurement of the Higgs boson
- 2. Lots of high energy data ($\sqrt{s} = 13 \text{ TeV}$, 139 fb⁻¹) + many physics goals \rightarrow improved analysis strategies to better explore available datasets
- 3. Sophisticated analysis informs picture of new physics → motivation for **next** generation accelerator

High Energy Accelerator

Physics Motivations

What we need?

Where to look?

Physics Motivations

What we need?

- Beyond the Standard Model physics: explanations for dark matter, gravity...
- Understand recent anomalies/ excesses: Muon g-2, LHCb lepton non-universality...?

COLUMBIA UNIVERSITY

0.5

 R_K

8

LHCb 5 fb⁻¹ $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$ LHCb 9 fb⁻¹

 $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$

1.5

Physics Motivations

Where to look?

- Cool uncovered/ challenging signatures
 - Long lived particles: common in SM + relatively unconstrained at LHC
 - Boosted topologies: collimation of particles present in high mass parent decays
- Anything that is different/unexpected: anomaly detection

9

Outline

- Introduction to high energy collider physics
- 1. The ATLAS Experiment & the HL-LHC upgrade
 - LAr calorimeter readout electronics
- 2. Analysis innovation for new physics searches
 - Long-lived particles
 - Boosted topologies
 - Anomaly detection
- 3. Future accelerator experiments
 - Forays into e+e-
- Conclusions & ideas

Status of the LHC

- High Luminosity LHC (HL-LHC) in ~2027: up to 200 simultaneous pp collisions (>20x larger datasets) to give better handle on very rare new physics processes
 - Many detector subsystems getting upgraded or completely new readout to ensure fast and rad-hard electronics

• 27 km synchrotron at CERN colliding protons at $\sqrt{s} = 12$ TeV

Status of the LHC

- High Luminosity LHC (HL-LHC) in ~2027: up to 200 simultaneous pp collisions (>20x larger datasets) to give better handle on very rare new physics processes
 - Many detector subsystems getting upgraded or completely new readout to ensure fast and rad-hard electronics
- ATLAS calorimeters: detect energy/timing information of photons, electrons, jets, with readout electronics systems that sample calo cells at LHC bunch crossing frequency of 40 MHz & send digitized pulse off detector

LAr @ HL-LHC: FEB2 Pre-Prototype

- Columbia is responsible for the ADC in the LAr frontend readout chain (custom 40 MSPS 14-bit in 65 nm CMOS) and the integration of all custom chips (Front-End Board 2)
- First performance measurements from 32-channel Slice Testboard prototype well within specs!
 - For large pulses, energy resolution < 0.1% (cf. spec 0.25%), timing resolution ~50 ps
- Next steps:
 - Recently taped out new version of Columbia-UTAustin (COLUTA) ADC

G

- Full 128-channel FEB2 prototype in ~2022 + system tests

LAr Pulses

Energy Resolution

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

COLUTAv4

22 September 2021

13

NEVIS LABORATORIE

TEXAS

Outline

- Introduction to high energy collider physics
- 1. The ATLAS Experiment & the HL-LHC upgrade
 - LAr calorimeter readout electronics

2. Analysis innovation for new physics searches

- Long-lived particles
- Boosted topologies
- Anomaly detection
- 3. Future accelerator experiments
 - Forays into e+e-
- Conclusions & ideas

Delayed Photon Searches

- Signature = long-lived particles decaying to **displaced/out-of-time photons:** exploit ~100s ps timing resolution from LAr calorimeter
 - 1. Unblinded search for Higgs decaying to BSM particles with final state photons: *public soon!*
 - 2. Finalizing R&D on novel trackless calo-vertexing method searching for displaced diphoton vertices

Boosted Higgs Tagging es of the large-R jet structur

- 2020: first ATLAS <u>neural-net based</u>
 <u>H→bb tagger</u> for experiment-wide use
 - Highly applicable (bb is most common decay of Higgs)
 - Classifier to distinguish heavy flavor Higgs decays from common backgrounds (multijet, top)
 - Factor x1.5-2 better background rejection w.r.t. previous method
- 2021: calibration of Xbb tagger (scale factors to equate performance in data vs. MC) to be used in upcoming round of ATLAS publications

ATL-PHYS-PUB-2021-035

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

ermisignature-less Searches: Anomaly Detection

 Anomaly detection (AD) = identify features of the data that are inconsistent with a background-only model

25

Weakly supervised: train with noisy labels ("signal-contaminated
 Unsupervised: train over unlabeled events

- Complementarity of existing model specific efforts (eg. SUSY) with model independent data-driven searches → look under every lamppost!
 - LHC Olympics 2020: cross-experiment/theory "competition" of AD methods

Tagging Anomalous Jets

- First adaptation of a variational recurrent neural network (autoencoder + RNN) to the tagging of anomalous jets
 - Unsupervised training over jets in data: no signal model!
- Application to Y→XH search for model-independent tagging of Higgs-associated new bosons
 - Potential to be first unsupervised learning in ATLAS analysis

m_{JJ}, QCD + signal

Anomaly-selected

X

Jet

Jet

 \bar{q}

q

→ A. Kahn, JG, et al [arXiv:2105.09274]

No selection

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Outline

- Introduction to high energy collider physics
- 1. The ATLAS Experiment & the HL-LHC upgrade
 - LAr calorimeter readout electronics

2. Analysis innovation for new physics searches

- Long-lived particles
- Boosted topologies
- Anomaly detection

3. Future accelerator experiments

- Forays into e+e-
- Conclusions & ideas

Beyond the LHC

- Snowmass 2022: decadal US HEP community planning process to discuss long term physics goals & inform next international experimental plan
- Several e+e- colliders (ILC, FCCee, CEPC) are strong candidates for next accelerator
- How to exploit novel data analysis methods (eg. anomaly detection) in an entirely different type of particle collision?
 - Many crucial differences in hadron vs. e+e- events: initial state knowledge, background processes, pileup, detector info

APS I DIVISION OF PARTICLES & FIELDS

Anomaly Detection in e+e-Collisions

• Radiative return: "scan" new particle masses with ISR photons, à la dijet invariant mass bump hunts

e+e- √s = 1 TeV

Anomaly Detection in e+e-Collisions

- Radiative return: "scan" new particle masses with ISR photons, à la dijet invariant mass bump hunts
- Weakly supervised learning used to leverage sideband data in S vs. B classification (high-dim PFN inputs)
- Gain sensitivity to signal contaminations down to 0.3%!

e+e- √s = 1 TeV

ROC: X=700 GeV vs. bkg

22 September 2021

COLUMBIA UNIVERSITY

22

Conclusions

 Energy frontier provides unique reach towards beyond the SM physics prospects

- 1. Maximizing utility of LHC through detector upgrades
- 2. Better analysis techniques for broad new physics sensitivity
- 3. Motivating and brainstorming for next accelerator
- What I'm excited about:
 - Dark matter: exploiting ML/AD for challenging dark jet signatures
 - Readout development of next-generation calorimeters
 - Snowmass (& beyond) connectivity and community building

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Slice Testboard

- Done with a sequence of increasingly complex pre-prototypes with new generations of custom ASIC
- 2019: Analog Testboard (2 channels)
- **2020-21**: Slice Testboard (32 channels) with 3rd pre-prototypes of PA/S + ADC + v0 prototype of IpGBT
- 2022: Full 128 channel FEB2 prototype

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

25

CV3 Physics Requirements

• Dynamic range = 14 bits

- LAr total dynamic range is 16-bits, set between noise levels and (at high end) by discovery reach for heavy Z' to ee
- Handled by 2 gain scales, to avoid overlap in Higgs mass range, and to reduce total data flow to LASP
- Therefore, each gain scale needs 14-bit dynamic range

• Precision = 11-bits (full scale, 8 MHz)

- Does not significantly degrade LAr energy resolution (eg. maintains Higgs mass resolution, which is critical for precision Higgs studies and HH search; makes limited contribution to constant term for large energies)

A Word on Jets

- Jets = sprays of hadronic particles reconstructed with clustering algorithms into a cone
- Higher mass exclusions for new particles + high energy collisions = high momentum outputs
 - Constituents: individual hadrons in jet
 - Boosting: collimation of constituents due to high momentum parent
 - Substructure: synthesizing correlations between jet constituents to determine particle content in large radius jet

econstructed in **one large-R jet**

ure the full correlation of the large-R jet

- l jet tagging in CMS
-).8 jets (AK8 jets) by default
- gging of t/W/Z/H and BSM particles, decaying the different flavours

- → Challenges in boosted jet
 - increasing complexity w radius jet cone
 - limited resolution to ide constituents
- → In this talk, we will
 - summarise the previous boosted jet tagging algo
 - illustrate the improve brought by advanced
 - discuss recent application
 boosted jet tagging met

VRNN Architecture

- Train directly on data (avoid data/MC discrepancies in QCD)
- Merge sequence modeling nature of RNN with variational inference capability of VAE

$$\mathcal{L}(t) = |\mathbf{y}(t) - \mathbf{x}(t)|^2 + \lambda D_{KL}(z||z_t)$$

Convolution

Jet Image

VRNN LHCO Results

Data-Driven/Weakly Supervised (CWoLa)

 NN trained in signal region vs. sideband is sensitive to signal vs. background chara - SR and SB defined in fraction of signal In our case... **3888** Mixed Sample 1 Mixed Sample 2 8888 8888 BB<mark>B</mark>B <mark>(S) (B) (B) (S)</mark> dN/dmres (S)(S) **(**B) (S) S) **(**B) B B В В (S) S S background **(**B) **(** B) signal 0 \sqrt{S} Classifier Features for training CWoLa classifier 150 per event! 1708.02949. 1805.02664 COLUMBIA UNIVERSITY 22 September 2021 J. Gonski 31 IN THE CITY OF NEW YORK

e+e- AD Results

- Select signal and background in ± 25 GeV windows in \sqrt{s} around the resonance mass: SR = [675, 725)
- Train with a variety of signal contaminations: σ =0.0, 0.5, 1.0, 2.0, 3.0, 5.0, and ∞ (eg. all S vs. all B)
- Significance Improvement Characteristic (SIC): can enhance a 0.6% signal contamination from 1.0σ to ~10.0σ

Semi-supervised

32

e+e- AD Considerations

- Normalization of inputs: CWoLa-trained classifier tested on background in SB vs. background in SR has minimal √s correlation (right)
- Detector features such as mass resolution and forward acceptance have strong impact on radiative return AD analyses: investigating different √s reconstruction measures to understand dependency and inform e+edetector design

ROC: Bkg in SB vs. Bkg in SR

Measured \sqrt{s} , photon lost

22 September 2021

COLUMBIA UNIVERSITY