
J. Gonski22 September 2021

Tools for Discovery at

High Energy Colliders

1

Julia Gonski

22 September 2021


Rising Stars in Experimental Particle Physics Symposium

University of Chicago



J. Gonski22 September 2021

Outline

2

• Introduction to high energy collider physics


1. The ATLAS Experiment & the HL-LHC upgrade

- LAr calorimeter readout electronics 


2. Analysis innovation for new physics searches

- Long-lived particles 

- Boosted topologies 

- Anomaly detection


3. Future accelerator experiments  

- Forays into e+e- 


• Conclusions & ideas



J. Gonski22 September 2021

• Introduction to high energy collider physics


1. The ATLAS Experiment & the HL-LHC upgrade

- LAr calorimeter readout electronics 


2. Analysis innovation for new physics searches

- Long-lived particles 

- Boosted topologies 

- Anomaly detection


3. Future accelerator experiments  

- Forays into e+e- 


• Conclusions & ideas

Outline

3



J. Gonski22 September 2021

1. Large Hadron Collider: 27km proton synchrotron at CERN responsible for discovery 
and precise measurement of the Higgs boson


2. High CoM/statistics + many physics goals → improved analysis strategies to better 
explore available datasets


3. Sophisticated analysis informs picture of new physics (excesses, flavor anomalies, 
tricky phase space) → motivation for next accelerator 

Collider Experiment Strategy
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Figure 2. A Variational Autoencoder with a Gaussian latent space parametrization.

where ✏ is sampled from a unit isotropic normal distribution ✏ ⇠ N (0, 1) [10].

The VAE loss function includes both a reconstruction error term as well as an additional Kullback-
Leibler (KL)-Divergence term from a chosen prior distribution p(z) to the approximate posterior
distribution q(z|x):

L = |y � x|2 + DKL(q(z|x)||p(z)). (1.3)

For the prior, it is common to choose a unit isotropic Gaussian centered at the origin, as the KL-
Divergence from a Gaussian prior to a Gaussian approximate posterior takes on a closed form
solution [11].

Variational Autoencoders provide a number of improvements over standard Autoencoders, both as
generative models [10] and as anomaly detection tools [12]. The inclusion of a KL-Divergence
term in the loss function motivates the architecture to more appropriately model unique classes of
data. It also acts as another discriminatory metric, as anomalous elements are expected to have
both a large reconstruction error and a large KL-Divergence when compared to nominal elements.

While VAEs have shown promise in the task of jet-level anomaly detection, they have a number of
drawbacks. Most notably, VAEs are a fixed-length architecture, and cannot accommodate a variable
number of inputs. When modeling jets via their constituent four-vectors, it becomes necessary to
only process at most N constituents, and zero-pad the input layer when processing a jet with
a number of constituents less than N . In classifier models, this is common and benign, as the
loss function depends only on the output of the network and the ground truth that it is trying to
reproduce. However, in a VAE, the input layer’s neuron values are a part of its loss function (due to

– 4 –
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1. Large Hadron Collider: 27km proton synchrotron at CERN responsible for discovery 
and precise measurement of the Higgs boson


2. Lots of high energy data (√s = 13 TeV, 139 fb-1) + many physics goals → improved 
analysis strategies to better explore available datasets


3. Sophisticated analysis informs picture of new physics → motivation for next 
generation accelerator 
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Physics Motivations
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What we need? Where to look?
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Physics Motivations
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❖ Beyond the Standard Model 
physics: explanations for dark 
matter, gravity… 


❖ Understand recent anomalies/
excesses: Muon g-2, LHCb lepton 
non-universality… ?

What we need?
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Physics Motivations
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❖ Cool uncovered/
challenging signatures 

‣ Long lived particles: 

common in SM + relatively 
unconstrained at LHC


‣ Boosted topologies: 
collimation of particles 
present in high mass 
parent decays


❖ Anything that is 
different/unexpected: 
anomaly detection

Where to look?

J. Gonski12 January 2021

⌥ resonances, and in the continuum regions o↵ the resonances. Operating between 1999 and 2010, the
two experiments collected data samples totaling about 1600 fb�1. The largest sample used for LLP
searches was 711 fb�1.

In many LLP search analyses performed to date, the SM backgrounds have been extremely small,
sometimes much less than one event. In such cases, the search sensitivity grows roughly linearly with the
integrated luminosity of the data sample. This is in contrast to background-dominated BSM searches,
where sensitivity is proportional to the square root of the integrated luminosity. Therefore, LLP searches
are especially attractive for high-luminosity colliders. In particular, this includes the future runs of the
LHC [22], but also those of Belle II [23] and proposed high-energy e

+
e
� facilities such as FCC-ee [24].

As the focus of this review is BSM LLP searches at particle colliders, we aim to cover the broad range
of theoretical models, their experimental signatures at such facilities, and published searches pursuing
them. Thus, other than an occasional mention when relevant, we do not discuss experiments at non-
collider facilities or results from astrophysical observations1. Furthermore, following the definition of
LLP signatures stated above, we do not include signatures without detectable features of the LLP or
its decay.

Basic distance-scale definitions used throughout the review are indicated in Fig. 1. A particle decay
is considered prompt if the distance between the particle’s production and decay points is smaller than
or comparable to the spatial resolution of the detector. By contrast, a distance significantly larger than
the spatial resolution characterizes a displaced decay. Depending on the relevant detector subsystem,
the typical resolution scale is between tens of micrometers to tens of millimeters. The second distance
scale of relevance is the typical size of the detector or relevant subsystem, ranging from about 10 cm to
10 m. A particle is detector stable if its decay typically occurs at larger distances.

In Sec. 2 we review the theoretical motivation and a variety of BSM scenarios that give rise to
LLPs. The experimental methods used for identifying LLPs, which frequently give rise to non-standard

1
For a review of implications of collider-accessible LLPs on cosmology and astroparticle physics, see Ref. [2]

Figure 1: The SM contains a large number of metastable particles. A selection of the SM particle
spectrum is shown as a function of mass and proper lifetime. Shaded regions roughly represent the
detector-prompt and detector-stable regions of lifetime space, for a particle moving at close to the
speed of light.

5

•The why: lots of particles in the SM have lifetimes  
- Plus, many existing ~TeV mass exclusions are invalid if the particle 
is long-lived

Challenge #2: Long Lifetimes

�49

Standard Model Lifetimes

Detector 
scale

J. Gonski12 January 2021 �42

2-prong 3-prongNo 
substructure

Single q/g H→bbLarge-radius jetSmall-radius jets t→W(qq)b

Challenge #1: Boosted Topologies
• The why: high mass/pT parent particles = highly boosted objects 
in final state
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• High Luminosity LHC (HL-LHC) in ~2027: up to 200 simultaneous pp collisions 
(>20x larger datasets) to give better handle on very rare new physics processes


- Many detector subsystems getting upgraded or completely new readout to ensure fast 
and rad-hard electronics


• ATLAS calorimeters: detect energy/timing information of photons, electrons, jets, 
with a readout electronics system that samples calo cells at LHC bunch crossing 
frequency of 40 MHz and sends digitized pulse off detector 

Status of the LHC

11

  ATLAS Calorimeters. 

J. Gonski12 January 2021

The Large Hadron Collider

�18

11 May 2016! J. Gonski! 14!

The Large Hadron Collider 
11 May 2016! J. Gonski! 14!

The Large Hadron Collider 

• 27 km synchrotron at CERN colliding protons at √s = 13 TeV

ATLAS Detector
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Status of the LHC
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ATLAS Detector

J. Gonski12 January 2021

The ATLAS LAr Calorimeter
• Two calorimeters: electromagnetic (LAr; Columbia) + hadronic 
(Tile; Chicago) 
•Readout electronics system samples calo cells at LHC frequency 
of 40 MHz and sends a digitized pulse off the detector 

�53

•High Luminosity LHC (HL-
LHC) in ~2025: ~triple the 
instantaneous luminosity 
to give better handle on 
very rare new physics 
processes  
- To achieve physics goals, 

calorimeters require 
completely new readout 
of fast and rad-hard 
electronics

TileCal

LAr EM Cal

  ATLAS Calorimeters 

• High Luminosity LHC (HL-LHC) in ~2027: up to 200 simultaneous pp collisions 
(>20x larger datasets) to give better handle on very rare new physics processes


- Many detector subsystems getting upgraded or completely new readout to ensure fast 
and rad-hard electronics


• ATLAS calorimeters: detect energy/timing information of photons, electrons, jets, 
with readout electronics systems that sample calo cells at LHC bunch crossing 
frequency of 40 MHz & send digitized pulse off detector 
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COLUTAv4

LAr @ HL-LHC: FEB2 Pre-Prototype
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• Columbia is responsible for the ADC in the LAr frontend readout 
chain (custom 40 MSPS 14-bit in 65 nm CMOS) and the integration 
of all custom chips (Front-End Board 2)


➡ First performance measurements from 32-channel Slice Testboard 
prototype well within specs! 

- For large pulses, energy resolution < 0.1% (cf. spec 0.25%), timing 

resolution ~50 ps 


• Next steps: 

- Recently taped out new version of Columbia-UTAustin (COLUTA) ADC 

- Full 128-channel FEB2 prototype in ~2022 + system tests

FEB2 Integra.on Study

• The Slice Testboard is the current 32-channel 

pre-prototype of the FEB2: 

– 8 PA/S ASICs

– 8 COLUTAV3 ASICs

– 8 lpGBT ASICS
• The analog performance of the Slice Testboard is 

currently being studied in detail, a few results of 

which are in the following slides

ATLAS HL-LHC Upgrade Project LAr FE, September 2, 2021 14Rui Xu, Columbia University

PDR Rec: The reviewers suggest that given the very challenging 
specifications of the ADC, the design team should take the time to fully 
characterize the Preamp/Shaper/ADC system and analyze the results prior to 
submitting the COLUTAv4, as this could lead to a production-ready chip, 
potentially saving one design iteration.

Measured Pulse Shapes

ATLAS HL-LHC Upgrade Project LAr FE, September 2, 2021 15Rui Xu, Columbia University

Measured output pulseshapes on HI (left) and LO (right) gain, as a function of the 
amplitude of the triangular input current injected into the PA/S input

Measured Energy and Timing Resolu.on

ATLAS HL-LHC Upgrade Project LAr FE, September 2, 2021 16Rui Xu, Columbia University

preliminary measured energy (left) and timing (right) resolution, as a function of the 
amplitude of the triangular input current injected into the PA/S input

For large pulses:
 - Energy resolution < 0.1 %
 - Timing resolution ~ 50 pS (dominated by system jitter)
Both exceed spec.

LAr Pulses Energy Resolution

Work: COLUTAV4

Description: 8-channel digitizer prototype for LAr Detector, version 4

Fabrication Date: September 2021, TSMC N65LP
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Delayed Photon Searches

15

• Signature = long-lived particles decaying to displaced/out-of-time 
photons: exploit ~100s ps timing resolution from LAr calorimeter 

1. Unblinded search for Higgs decaying to BSM particles with final state 
photons: public soon!  


2. Finalizing R&D on novel trackless calo-vertexing method searching for 
displaced diphoton vertices

8
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FIG. 3. Signal distributions for (left) ∆zγ and (right) tγ , for some example GMSB SPS8 model points. The upper two plots
show signal shapes for NLSP lifetime (τ ) values of 0.25, 1, 2.5, and 25 ns, all with the effective scale of SUSY breaking (Λ)
fixed to a value of 160 TeV. The lower two plots show signal shapes for Λ values of 80, 160, and 300 TeV, all with τ fixed to
a value of 1 ns. Superimposed on each of the plots are the corresponding data distributions for the samples used to model the
backgrounds, namely Z → ee events and diphoton events with Emiss

T < 20 GeV. For all plots, the distributions are normalized
to unity area within the horizontal-axis range displayed, and the uncertainties shown on the data distributions are statistical
only.

clude contributions from photons as well as from misiden-
tified jets that satisfy the loose photon signature. The
unit-normalized Emiss

T < 20 GeV templates are shown
superimposed on the plots of Fig. 3. As expected, Fig. 3
shows that the ∆zγ distribution is much wider for the
Emiss

T < 20 GeV sample than for the Z → ee sam-
ple, while the tγ distributions of these two background
samples are very similar. Both backgrounds have distri-

butions that are very different than those expected for
GMSB SPS8 signal events, with larger differences ob-
served for higher lifetime values.

LAr Calo Signal Timing

J. Gonski12 January 2021

Higgsinos & Delayed Photons

�52

• Key signal to background discrimination in precise LAr calo signal timing info & 
segmentation that determines photon direction 

• Building new trackless calo-vertexing method; sensitivity to very long-lived signals 
that decay outside the tracker (including Z → ee!) 

8
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only.

clude contributions from photons as well as from misiden-
tified jets that satisfy the loose photon signature. The
unit-normalized Emiss

T < 20 GeV templates are shown
superimposed on the plots of Fig. 3. As expected, Fig. 3
shows that the ∆zγ distribution is much wider for the
Emiss

T < 20 GeV sample than for the Z → ee sam-
ple, while the tγ distributions of these two background
samples are very similar. Both backgrounds have distri-

butions that are very different than those expected for
GMSB SPS8 signal events, with larger differences ob-
served for higher lifetime values.

LAr Calo Signal Timing

(Timeline: summer 2021)

LAr Calo Segmentation

LAr 2

LAr 1

Beamline
•

Primary Vertex

LLP

ɣ1 ɣ2
x x

xx

✹ Secondary Vertex

LRT vs Trackless Calo-Vertexing, 18 December 2020K. Kennedy, Columbia University

Trackless Calo-Vertexing Method

3

➢ This method relies exclusively on measurements made in the LAr 
calorimeter, which is segmented in eta, phi, and R 

○ We use 2 layers in R and eta measurements

○ LAr is more coarsely segmented in phi, leading to relatively 
poor phi measurements. We choose to ignore these

➢ Note that we always use photon objects, even for reconstructing 
displaced electrons

Z

R

R-Z Plane:
Phi coordinates are ignored, 

so vertexing occurs in a 2D plane

Note: in this RZ plane, 
R can be negative

Reco Vertex

➢ 2D Vertexing Procedure: 

○ Project all photon measurements onto the slice phi=0 (ie, ignore 
phi measurements). All photon measurements are now in the R-Z 
Plane 

○ Similar to the procedure that calculates photon pointing, draw a 
line through the photon shower barycenters in the front (first) 
and middle (second) layers of the LAr calorimeter (right, yellow) 

○ Find the point of intersection of these 2 lines -- the coordinates 
of this point in the R-Z axis system are defined as the vertex 
position

LAr “Calo-Vertexing”
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Introduction
•X→bb tagging = identification of boosted boson topologies decaying to 
heavy flavor quarks  
- Applications: heavy BSM (eg. VHbb, Y→XH), SM boosted bosons (eg. ggH→bb, 

H→cc, WWW) 

•Dominant tactic in ATLAS & CMS = machine learning  
- Small-R b-tagging suboptimal in dense boosted environment with overlapping signals 

large-R 
jet

Boosted jet tagging in CMS

Congqiao Li (Peking University) 7 July, 2021ML4Jets 2021

ML4Jets 2021

Introduction
➔ Boosted jet tagging is crucial in the LHC experiment 

❖ benefit in exploring the rich phase-space from the boosted 
region 
‣ decay products of the boosted heavy resonance are close in 

proximity  
 → can be reconstructed in one large-R jet 

❖ ability to capture the full correlation of the large-R jet 
constituents 

➔ Types of boosted jet tagging in CMS 
❖ applied to R=0.8 jets (AK8 jets) by default 
❖ include the tagging of t/W/Z/H and BSM particles, decaying 

to hadrons with different flavours

2

H/Z → bb̅ H/Z → cc̅ W → cq t → bW → bcq

…

b̅
b

MET

a simulated Z(νν)H(bb) event from CMS: the boosted H(bb) 
object can be tagged with a large-R jet

different types of the large-R jet structure

➔ Challenges in boosted jet tagging 
❖ increasing complexity within a large 

radius jet cone 
❖ limited resolution to identify the jet 

constituents 

➔ In this talk, we will 
❖ summarise the previous and new 

boosted jet tagging algorithms in CMS 
‣ illustrate the improved performance 

brought by advanced NN techniques 

❖ discuss recent applications of the 
boosted jet tagging methods

b

b

b

c
c

c

c

q q

H/Z/?

subjets

Boosted Higgs Tagging

16

• 2020: first ATLAS neural-net based 
H→bb tagger for experiment-wide use

- Highly applicable (bb is most 
common decay of Higgs)


- Classifier to distinguish heavy 
flavor Higgs decays from 
common backgrounds (multijet, 
top) 


- Factor x1.5-2 better background 
rejection w.r.t. previous method 


➡ 2021: calibration of Xbb tagger 
(scale factors to equate performance 
in data vs. MC) to be used in 
upcoming round of ATLAS 
publications 

➡ ATL-PHYS-PUB-2021-035

X→bb vs. Multijet ROC

http://cdsweb.cern.ch/record/2724739
http://cdsweb.cern.ch/record/2724739
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-035/
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Why Anomaly Detection?

�16
J. Gonski19 May 2021

A Word on Jets

�11

• Jets = sprays of hadronic particles reconstructed with clustering into a cone  
•Higher mass exclusions for new particles + high energy machine = high momentum 
outputs  
- Boosting = collimation of decay byproducts  (multiple decays may overlap & reco as a 

single jet) 
- Substructure: synthesizing correlations between jet constituents to determine particle 

content in “fat” (large radius) jet 

?1

?2

?3

•But, what if we don’t know the characteristics of our signal?  
-  A broad search for “new physics” means we want to be sensitive to 

anything not predicted by the Standard Model (and perhaps, not even 
predicted by us) 

• Still make general categorizations, eg. two-jet resonance search 
scanning mres

25

mres

dN
/d
m

re
s

background

signal

CWoLa for anomaly detection
J. Collins, K. Howe, BPN
PRL 121 (2018) 241803

J. Collins, K. Howe, BPN
PRD 99 (2019) 014038

25

mres
dN

/d
m

re
s

background

signal

CWoLa for anomaly detection
J. Collins, K. Howe, BPN
PRL 121 (2018) 241803

J. Collins, K. Howe, BPN
PRD 99 (2019) 014038

?res

Signature-less Searches: Anomaly Detection

17

• Anomaly detection (AD) = identify features of the data that are inconsistent 
with a background-only model 


- Weakly supervised: train with noisy labels (“signal-contaminated”)

- Unsupervised: train over unlabeled events


• Complementarity of existing model specific efforts (eg. SUSY) with model 
independent data-driven searches → look under every lamppost! 


- LHC Olympics 2020: cross-experiment/theory “competition” of AD methods 

➡ LHC Olympics 
[arXiv:2105.09274]

Resonance 
Search in

Dijet Invariant 
Mass (mJJ)

https://arxiv.org/abs/2105.09274
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• First adaptation of a variational recurrent neural network 
(autoencoder + RNN) to the tagging of anomalous jets


- Unsupervised training over jets in data: no signal model!


• Application to Y→XH search for model-independent tagging of 
Higgs-associated new bosons

➡Potential to be first unsupervised learning in ATLAS analysis

➡  A. Kahn, JG, et al [arXiv:2105.09274]
J. Gonski14 July 2021

Results: 2-Prong Signal

�10

•Perform bump hunt on mJJ with selection on Event Score = max of two leading jet 
Anomaly Scores 
•Dataset = background + 1% signal contamination 
➡ Enhance a 0.5σ two-prong signal excess to 4.0σ solely from an Event Score cut 
at 0.65 

➡ Enhance a 0.5σ three-prong excess to 1.5σ using the same score

Figure 13. Two-prong dijet mass distributions before (left) and after (right) requiring the Event Score to ex-
ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 4� while retaining the smoothly falling background distribution.

Figure 14. Three-prong dijet mass distributions before (left) and after (right) requiring the Event Score to ex-
ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 1.5� while retaining the smoothly falling background distribution.
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• Introduction to high energy collider physics


1. The ATLAS Experiment & the HL-LHC upgrade

- LAr calorimeter readout electronics 


2. Analysis innovation for new physics searches

- Long-lived particles 

- Boosted topologies 

- Anomaly detection


3. Future accelerator experiments  

- Forays into e+e- 


• Conclusions & ideas

Outline
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Beyond the LHC

20

• Snowmass 2022: decadal US HEP community planning process 
to discuss long term physics goals & inform next international 
experimental plan 

• Several e+e- colliders (ILC, FCCee, CEPC) are strong candidates for next accelerator

• How to exploit novel data analysis methods (eg. anomaly detection) in an entirely 
different type of particle collision?


- Many crucial differences in hadron vs. e+e- events: initial state knowledge, background 
processes, pileup, detector info


e+e- → WW → 
, √s=1 

TeV ILC  
qq̄qq̄

[ref]

pp → dijet, 
√s=13 TeV 
LHC  

[ref]

https://www-jlc.kek.jp/~miyamoto/evdisp/html/index.html
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Collisions
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• Radiative return: “scan” new particle masses with ISR 
photons, à la dijet invariant mass bump hunts


• Weakly supervised learning used to leverage sideband 
data in S vs. B classification (high-dim PFN inputs)


➡ Gain sensitivity to signal contaminations down to 0.3%! 

Anomaly Detection in e+e- Collisions

21
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Figure 1: Feynman diagrams of the background (a) and signal (b) processes considered.

3 Simulated Samples & Processing

We consider e+e� collisions at a nominal centre-of-mass (CoM) energy of 1 TeV that pro-
duce final states with jets and a photon from initial-state-radiation (ISR). The signal process
studied is the production of a BSM heavy scalar X that decays into a pair of scalars a, each
decaying to two b-quarks, in association with a ISR photon: e+e� ! X ! aa ! bb̄bb̄�. Two
sets of values of the invariant masses of particles X and a are examined: mX ,ma = 350, 40 GeV
and 700, 100 GeV. The background originates from di-jet production in association with a
ISR photon, with a cross-section that is dominated by the Drell-Yan �⇤/Z production and
extends to close to the nominal 1 TeV CoM. Feynman diagrams of the signal and background
processes are shown in Figure 1.

The generation of background and signal events is done by MadGraph5_aMC@NLO

X.X.X [4] with parton showering and hadronization performed by Pythia8 [5]. A minimum
ET threshold of 10 GeV is placed on the photon, with a pseudo-rapidity that extends to
±5.

The detector simulation is parameterized with Delphes X.X, using a card for a generic
ILC detector []. A particle flow algorithm is used to combine tracking and calorimeter
information and define the final reconstructed objects. Photons are built from energy
deposits in the electromagnetic calorimeter that are not matched to any track, using the
central and forward calorimeter systems with pseudo-rapidity coverages of |⌘| < 3.0 and
3.0 < |⌘| < 4.0, respectively. Jets are built from particle flow objects (except isolated muons,
electrons and photons) measured in the tracker (with an acceptance of up to |⌘| < 3.0,
electromagnetic and hadronic calorimeters (central system up to 2.8 and forward system
up to 3.8 in absolute pseudo-rapidity). The jet clustering is performed with the anti-kt [6]
algorithm with a radius R = 1.0 implemented in FastJet [7].

Events are selected for analysis if they contain at least two jets with a minimum pT of
X GeV. An effective CoM energy can be calculated for all events based on the The effective
CoM energy

p
ŝ is shown in Figure 2 for all generated samples, calculated with truth-level

quantities. Distributions of the photon transverse energy and pseudo-rapidity are shown
on Figure 4 for the background and signal processes considered.

The unpolarized cross-section for the background process is of the order of 1 pb, cor-
responding to approximately X events above the Z peak. This amount of statistics would

– 2 –

e+e- √s = 1 TeV

➡ JG, et al [arXiv:2108.13451]

https://arxiv.org/abs/2108.13451
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Anomaly Detection in e+e- Collisions
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700 GeV X

~ 300 GeV ɣ

350 GeV X

~ 650 GeV ɣ

• Radiative return: “scan” new particle masses with ISR 
photons, à la dijet invariant mass bump hunts


• Weakly supervised learning used to leverage sideband 
data in S vs. B classification (high-dim PFN inputs)


➡ Gain sensitivity to signal contaminations down to 0.3%! 
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Figure 1: Feynman diagrams of the background (a) and signal (b) processes considered.

3 Simulated Samples & Processing

We consider e+e� collisions at a nominal centre-of-mass (CoM) energy of 1 TeV that pro-
duce final states with jets and a photon from initial-state-radiation (ISR). The signal process
studied is the production of a BSM heavy scalar X that decays into a pair of scalars a, each
decaying to two b-quarks, in association with a ISR photon: e+e� ! X ! aa ! bb̄bb̄�. Two
sets of values of the invariant masses of particles X and a are examined: mX ,ma = 350, 40 GeV
and 700, 100 GeV. The background originates from di-jet production in association with a
ISR photon, with a cross-section that is dominated by the Drell-Yan �⇤/Z production and
extends to close to the nominal 1 TeV CoM. Feynman diagrams of the signal and background
processes are shown in Figure 1.

The generation of background and signal events is done by MadGraph5_aMC@NLO

X.X.X [4] with parton showering and hadronization performed by Pythia8 [5]. A minimum
ET threshold of 10 GeV is placed on the photon, with a pseudo-rapidity that extends to
±5.

The detector simulation is parameterized with Delphes X.X, using a card for a generic
ILC detector []. A particle flow algorithm is used to combine tracking and calorimeter
information and define the final reconstructed objects. Photons are built from energy
deposits in the electromagnetic calorimeter that are not matched to any track, using the
central and forward calorimeter systems with pseudo-rapidity coverages of |⌘| < 3.0 and
3.0 < |⌘| < 4.0, respectively. Jets are built from particle flow objects (except isolated muons,
electrons and photons) measured in the tracker (with an acceptance of up to |⌘| < 3.0,
electromagnetic and hadronic calorimeters (central system up to 2.8 and forward system
up to 3.8 in absolute pseudo-rapidity). The jet clustering is performed with the anti-kt [6]
algorithm with a radius R = 1.0 implemented in FastJet [7].

Events are selected for analysis if they contain at least two jets with a minimum pT of
X GeV. An effective CoM energy can be calculated for all events based on the The effective
CoM energy

p
ŝ is shown in Figure 2 for all generated samples, calculated with truth-level

quantities. Distributions of the photon transverse energy and pseudo-rapidity are shown
on Figure 4 for the background and signal processes considered.

The unpolarized cross-section for the background process is of the order of 1 pb, cor-
responding to approximately X events above the Z peak. This amount of statistics would

– 2 –

➡ JG, et al [arXiv:2108.13451]

e+e- √s = 1 TeV ROC: X=700 GeV vs. bkg

https://arxiv.org/abs/2108.13451
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Conclusions
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• Energy frontier provides unique reach towards beyond 
the SM physics prospects


1. Maximizing utility of LHC through detector upgrades 

2. Better analysis techniques for broad new physics sensitivity

3. Motivating and brainstorming for next accelerator 


• What I’m excited about: 

✓ Dark matter: exploiting ML/AD for challenging dark jet 

signatures 

✓ Readout development of next-generation calorimeters

✓ Snowmass (& beyond) connectivity and community building  

  

https://lhco2020.github.io/homepage/
https://lhco2020.github.io/homepage/
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Backup
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Slice Testboard
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Measured Energy and Timing Resolu.on

ATLAS HL-LHC Upgrade Project LAr FE, September 2, 2021 16Rui Xu, Columbia University

preliminary measured energy (left) and timing (right) resolution, as a function of the 
amplitude of the triangular input current injected into the PA/S input

For large pulses:
 - Energy resolution < 0.1 %
 - Timing resolution ~ 50 pS (dominated by system jitter)
Both exceed spec.

J. Gonski22 March 2021 �12E. Busch 3

Review: FEB2 
Data/Signal 
Flow

• V1.1 board assembled with full set of 8 
PA/S, 8 ADCs, 8 lpGBTs
• up from only 2 PA/S & 3 ADC on 

v1.0
• 32 channels of readout

• Each channel represents a HI/LO 
gain pair

• Results will be shown only for the 16 
MDAC channels

10 March 2021

2020-21: Slice 
Testboard 
32 channels with 
3rd pre-prototypes 
of PA/S + ADC + 
v0 prototype of 
lpGBT

2022: FEB2 
prototype
full 128 channels

Integration
•Done with a sequence of increasingly complex pre-prototypes with new 
generations of custom ASIC 
• 2019: Analog Testboard (2 channels)

• Done with a sequence of increasingly 
complex pre-prototypes with new generations 
of custom ASIC


• 2019: Analog Testboard (2 channels)

• 2020-21: Slice Testboard (32 channels) with 
3rd pre-prototypes of PA/S + ADC + v0 
prototype of lpGBT


• 2022: Full 128 channel FEB2 prototype
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CV3 Physics Requirements

66

•Dynamic range = 14 bits
- LAr total dynamic range is 16-bits, set between noise levels 
and (at high end) by discovery reach for heavy Z’ to ee  
- Handled by 2 gain scales, to avoid overlap in Higgs mass 
range, and to reduce total data flow to LASP  
- Therefore, each gain scale needs 14-bit dynamic range 

•Precision = 11-bits (full scale, 8 MHz) 
- Does not significantly degrade LAr energy resolution (eg. 
maintains Higgs mass resolution, which is critical for 
precision Higgs studies and HH search; makes limited 
contribution to constant term for large energies) 

Primary ADC Requirements (1)
• Today we focus on the development of the ADC.
• The design requirements have been developed from physics goals, 

as shown below: 

ATLAS HL-LHC Upgrade Project LAr ADC PDR, December 8, 2020 3

§ Dynamic range = 14-bits
o LAr total dynamic range is 16-bits, set between noise levels 

and (at high end) by discovery reach for heavy Z’ to ee
o Handled by 2 gain scales, to avoid overlap in Higgs mass 

range, and to reduce total data flow to LASP
o Therefore, each gain scale needs 14-bit dynamic range

§ Precision = 11-bits (full scale, 8 MHz)
o Does not significantly degrade LAr energy resolution (eg.

maintains Higgs mass resolution, which is critical for 
precision Higgs studies and HH search; makes limited 
contribution to constant term for large energies)

Tim Andeen, UT-Austin

Primary ADC Requirements (1)
• Today we focus on the development of the ADC.
• The design requirements have been developed from physics goals, 

as shown below: 

ATLAS HL-LHC Upgrade Project LAr ADC PDR, December 8, 2020 3

§ Dynamic range = 14-bits
o LAr total dynamic range is 16-bits, set between noise levels 

and (at high end) by discovery reach for heavy Z’ to ee
o Handled by 2 gain scales, to avoid overlap in Higgs mass 

range, and to reduce total data flow to LASP
o Therefore, each gain scale needs 14-bit dynamic range

§ Precision = 11-bits (full scale, 8 MHz)
o Does not significantly degrade LAr energy resolution (eg.

maintains Higgs mass resolution, which is critical for 
precision Higgs studies and HH search; makes limited 
contribution to constant term for large energies)

Tim Andeen, UT-Austin

Pulse Energy Resolution
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A Word on Jets
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• Jets = sprays of hadronic particles reconstructed with clustering algorithms into 
a cone 


• Higher mass exclusions for new particles + high energy collisions = high 
momentum outputs 


- Constituents: individual hadrons in jet 

- Boosting: collimation of constituents due to high momentum parent

- Substructure: synthesizing correlations between jet constituents to determine particle 

content in large radius jet 

2-prong 3-prongNo 
substructure

Single q/g H→bbLarge-radius jetSmall-radius jets t→W(qq)b
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NN-based X→bb Tagging
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• Training: 6 fully connected 250-dim hidden layers, 
RELU activation, pT reweighted to QCD spectrum


• Inputs = large-R jet pT, η + up to 3 subjet DL1r 
(small-R b-tagging) scores 


• Output: probabilities for 3 classes (multijet, top, 
Higgs jets)


Top ROC

Category Multijet Top Higgs
� 2b 0.022 0.019 0.922

1b + � 1c 0.005 0.221 0.007
1b + 0c 0.039 0.481 0.070
0b + � 2c 0.036 0.007 -
0b + 1c 0.098 0.109 -
0b + 0c 0.801 0.162 0.001
= 1 subjet 0.025 0.009 0.005
= 2 subjets 0.469 0.463 0.585
� 3 subjets 0.505 0.528 0.410

Table 1: Fractional composition of large-R jets in analysis samples, broken down by flavor combination and the
number of subjets. All selection criteria in Section 2 are applied, in addition to the Higgs mass window. Flavor
contributions are given as the fractions of large-R jets that have at least two subjets. Categories without a numerical
entry are negligible. In the Higgs category, only the events originating from the decay of the Higgs boson into bottom
quark pairs are considered.

kinematic properties of the jets. To avoid the introduction of jet weights in the training, the downsampling
targets a distribution in which the total number of jets in each pT bin is equal to the minimum number of
unweighted jets in that pT bin across all processes.

The model used for double b-tagging is a feed-forward neural network, with six fully connected 250
dimensional hidden layers and rectified linear unit activation functions [32]. If there are fewer than three
associated subjets with pT > 7 GeV, the inputs corresponding to any missing subjets are replaced with the
mean input values. Batch normalization is inserted between hidden layers to stabilize training [33]. A
final softmax layer is used to assign probabilities to each class, giving three outputs corresponding to the
probabilities for Higgs (pHiggs), multijet (pmultijet) and top (ptop) processes. The model was trained using
the stochastic gradient descent and the Adam optimizer [34] in ����� [35] with the ���������� [36]
backend. Training data was fed in batches of 10,000 jets, and parameters updated with an initial learning
rate of 0.01, which was reduced by 10�5 after each batch. The model was trained for 200 epochs. To
mitigate overtraining, the data used in training is not used for evaluation. Within ATLAS reconstruction
the model is implemented in ����� [37].

5 Performance

The performance of the new algorithm is evaluated in terms its e�ciency (") for H ! bb̄ tagging, defined
as the number of tagged jets divided by the total number of H ! bb̄ jets in the region defined in Section 4,
along with the corresponding background rejection (1/"), considering either top or multijet processes as
backgrounds. The three-class output can be combined into a single discriminant roughly corresponding to
a log-likelihood ratio, defined as follows:

DXbb = ln
pHiggs

ftop · ptop + (1 � ftop) · pmultijet
(1)

5
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• 2020: first ATLAS neural-net based H→bb tagger for experiment-wide use
- Classifier to distinguish heavy flavor Higgs decays from common 

backgrounds (multijet, top)  
- Factor x1.5-2 better background rejection w.r.t. previous method  

➡ 2021: calibration of Xbb tagger (scale factors to equate performance in 
data vs. MC) to be used in upcoming round of ATLAS publications 

Boosted Higgs Tagging

16
J. Gonski27 July 2021 3

Introduction
•X→bb tagging = identification of boosted boson topologies decaying to 
heavy flavor quarks  
- Applications: heavy BSM (eg. VHbb, Y→XH), SM boosted bosons (eg. ggH→bb, 

H→cc, WWW) 

•Dominant tactic in ATLAS & CMS = machine learning  
- Small-R b-tagging suboptimal in dense boosted environment with overlapping signals 

large-R 
jet

Boosted jet tagging in CMS

Congqiao Li (Peking University) 7 July, 2021ML4Jets 2021

ML4Jets 2021

Introduction
➔ Boosted jet tagging is crucial in the LHC experiment 

❖ benefit in exploring the rich phase-space from the boosted 
region 
‣ decay products of the boosted heavy resonance are close in 

proximity  
 → can be reconstructed in one large-R jet 

❖ ability to capture the full correlation of the large-R jet 
constituents 

➔ Types of boosted jet tagging in CMS 
❖ applied to R=0.8 jets (AK8 jets) by default 
❖ include the tagging of t/W/Z/H and BSM particles, decaying 

to hadrons with different flavours

2

H/Z → bb̅ H/Z → cc̅ W → cq t → bW → bcq

…

b̅
b

MET

a simulated Z(νν)H(bb) event from CMS: the boosted H(bb) 
object can be tagged with a large-R jet

different types of the large-R jet structure

➔ Challenges in boosted jet tagging 
❖ increasing complexity within a large 

radius jet cone 
❖ limited resolution to identify the jet 

constituents 

➔ In this talk, we will 
❖ summarise the previous and new 

boosted jet tagging algorithms in CMS 
‣ illustrate the improved performance 

brought by advanced NN techniques 

❖ discuss recent applications of the 
boosted jet tagging methods

b

b

b

c
c

c

c

q q

H/Z/?

subjets
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H→bb Tagging
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➡ New! First ATLAS neural-net based H→bb tagger for experiment-wide use
- Classifier to distinguish Higgs jets from common backgrounds (multijet, top) 
- bb decay mode is most common for Higgs: broad applicability 
- Factor x1.5-2 better background rejection w.r.t. previous method

New: H→bb NN Output Discriminant

Figure 2: The discriminant distribution, for the DL1r-based benchmark defined as the minimum of the two leading
subjet discriminants (left), and the double b-tagging algorithm DXbb with a top fraction of f =0.25 (right). Distributions
are normalized to unity.

where ftop determines the fraction of top background, set to ftop = 0.25 for the studies presented here.
Variations of the discriminant definition in Equation 1 can be tuned to select any of the three large-R jet
species in various proportions.

Figure 2 shows the DXbb discriminant calculated for jets in the Higgs, top and multijet samples. For
comparison, Figure 2 also shows the discrimination obtained by directly using the DL1r outputs of the
subjets. The double b-tag requirement is fulfilled when the minimum DL1r discriminant value for the two
highest pT subjets is above a given threshold. The strategy of considering only the two highest pT subjets
reflects what has been adopted in the recent ATLAS H ! bb̄ measurements and searches discussed in
Section 1.

The DXbb performance is evaluated on samples with the selection criteria from Section 2 imposed, as well
as the Higgs mass requirement defined in Section 4. Both the Higgs and top samples are reweighted such
that their jet pT distribution matches the multijet pT spectrum as shown in Figure 1.

Jets are considered tagged when either DXbb or the minimum of the two subjet discriminants (for MV2 or
DL1r) is above some fixed threshold. Figure 3 shows the signal e�ciency and corresponding background
rejection for a wide range of possible values of this threshold, evaluated for either multijet or top jet
backgrounds. To emphasize cases where boosted tagging techniques are important, jets are required to
have pT > 500 GeV in this comparison. For the full range of signal e�ciencies, DXbb achieves an equal
or higher multijet and top jet background rejection when compared to an MV2 or DL1r double b-tag.
Specifically, the multijet (top jet) rejection for DXbb at 60% e�ciency is 92 (31), 1.4 (2.0) times that of an
MV2 double b-tag. The multijet rejection for DL1r at 60% e�ciency is approximately equal to that for
DXbb, while the DL1r top jet rejection of 19 is lower than that of DXbb by a factor of approximately 0.6.

The improvements of DXbb become more significant as the jet pT increases, where the decay product
subjets of the boosted Higgs or top are more likely to be fully contained within the R = 1.0 jet. This
improvement is illustrated in Figure 4, which shows the relative improvement of background rejection of
DXbb over the MV2 algorithm as a function of the minimum large-R jet pT and H ! bb̄ tagging e�ciency.
In both Figures 3 and 4, the tagger performance is heavily influenced by the performance of jets near the
lower pT threshold, due to the falling pT spectrum shown in Figure 1.

6

Old: 2 small-R jet b-tags H→bb NN DiscriminantNN Output Discriminant
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VRNN Architecture

64

• Train directly on data (avoid data/MC discrepancies in QCD)  
• Merge sequence modeling nature of RNN with variational inference capability of VAE  

also included which weights the KL-Divergence term’s contribution to the loss.174

L(t) = |y(t)� x(t)|2 + �DKL(z||zt) (10)

An overall loss L over the sequence is then computed by averaging the individual time-step175

losses over the length of the sequence N176

L =
L(t)
N

(11)

This loss function performs the same role as the VAE’s loss function, acting both as an appropri-177

ate means of optimizing the architecture as well as a discriminatory quantity between nominal178

and anomalous elements of the dataset.179
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Figure 3: A Variational Recurrent Neural Network cell.

The details of the VRNN architecture used in this study are as follows: The number of neu-180

rons in each intermediate layer, including the hidden state and feature extracting layers, but181

not including the latent space and its µ and � layers, is 16. The latent space is chosen to be182

two-dimensional. Since constituent four-vectors of jets are being modeled, the input x(t) and183

output y(t) layers are three dimensional, corresponding to the pT , ⌘,and � of each constituent.184

ReLU [13] activations are used in each layer of the network, except for � and �t, which have185

softmax [13] activations, and z and y(t), which have linear activations.186

The constituents of an input jet are processed sequentially, one per time-step. Each time-step187

6

Latent Space (Gaussian)

Hidden State =  
long-term 

representation of info 
over sequence 

Input  
(constituent 4-

vectors)

Output 
(constituent 4-

vectors)

Feature extracting layers

using a recurrent architecture, the model in this study has been chosen to be one which combines137

the recurrent property of RNNs with the VAE’s ability to perform variational inference.138

The Variational Recurrent Neural Network (VRNN) used in this study is a sequence modeling139

architecture which replaces the encoder-decoder step of a traditional RNN with a VAE. An140

illustration of one VRNN cell can be seen in Figure 3. In this model, the VAE’s input at each141

time-step is given as the vector x(t), which is then encoded and decoded into an output vector142

y(t) which can be compared to x(t) via the reconstruction loss. The �x and �z layers represent143

feature-extracting layers, which are interpreted as learned representations of the features of the144

input x(t) and the encoded latent space distribution z(t), respectively. After each time-step,145

the hidden state is updated via a recurrence relation, in which the current hidden state h(t� 1)146

and the current set of extracted features �x and �z produce an updated hidden state h(t) via the147

following equation [10]:148

h(t) = f(�x,�z, h(t� 1)) (6)
Performing this particular step is the primary function of traditional RNN architectures such as149

Long Short-Term Memory Networks (LSTMs) [11] and Gated Recurrent Units (GRUs) [12].150

The VAE present in each cell of the VRNN notably differs from conventional VAEs in the151

following ways:152

1. The encoder and decoder are conditioned on the current time-step’s hidden state. This153

is represented by the concatenation operation between the hidden state h(t � 1) and the154

feature-extraction layers �x and �z.155

2. The prior from which the KL-Divergence is computed is no longer a unit Gaussian at the156

origin, but rather a multivariate Gaussian whose means and variances in each dimension157

are determined from the current time-step’s hidden state.158

The inclusion of a learned, time-dependent prior distribution is an important component of the159

VRNN architecture. Without this feature, the decoder network would only be able to access160

information about the current time-step from the hidden state, and the loss function would161

motivate the posterior distributions for each time-step to be identical. As a result, this allows162

the VRNN the flexibility to model complex structured sequences with high variability, as is163

expected from a jet represented by a sequence of constituent four-vectors. In more detail, each164

time-step’s latent space prior distribution parameters µt and �t are functions of the current time-165

step’s hidden state:166

zt ⇠ N (µt, �t), where µt, �t = f prior(ht�1) (7)
Similarly, the latent space approximate posterior is defined by parameters µ and � which are167

functions of the input’s extracted features �x and the hidden state ht�1168

z ⇠ N (µ, �), where µ, � = f post.(�x, ht�1) (8)

The generated output is then decoded from features extracted from the latent space distribution169

�z = f(z), while also being conditioned on the hidden state170

y(t) = fdec(�z, h(t� 1)) (9)

A loss for each time-step L(t) can then be computed by incorporating both the reconstruction171

error between the input constituent x(t) and generated output constituent y(t), as well as the172

KL-Divergence between the approximate posterior z and the learned prior zt. A constant � is173

5

also included which weights the KL-Divergence term’s contribution to the loss.174

L(t) = |y(t)� x(t)|2 + �DKL(z||zt) (10)

An overall loss L over the sequence is then computed by averaging the individual time-step175

losses over the length of the sequence N176

L =
L(t)
N

(11)

This loss function performs the same role as the VAE’s loss function, acting both as an appropri-177

ate means of optimizing the architecture as well as a discriminatory quantity between nominal178

and anomalous elements of the dataset.179
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Figure 3: A Variational Recurrent Neural Network cell.

The details of the VRNN architecture used in this study are as follows: The number of neu-180

rons in each intermediate layer, including the hidden state and feature extracting layers, but181

not including the latent space and its µ and � layers, is 16. The latent space is chosen to be182

two-dimensional. Since constituent four-vectors of jets are being modeled, the input x(t) and183

output y(t) layers are three dimensional, corresponding to the pT , ⌘,and � of each constituent.184

ReLU [13] activations are used in each layer of the network, except for � and �t, which have185

softmax [13] activations, and z and y(t), which have linear activations.186

The constituents of an input jet are processed sequentially, one per time-step. Each time-step187
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Figure 2: A Variational Autoencoder with a Gaussian latent space parametrization.

Divergence term in the loss function motivates the architecture to more appropriately model110

unique classes of data. It also acts as another discriminatory metric, as anomalous elements are111

expected to have both a large reconstruction error and a large KL-Divergence when compared112

to nominal elements.113

While VAEs have shown promise in the task of jet-level anomaly detection, they have a number114

of drawbacks. Most notably, VAEs are a fixed-length architecture, and cannot accommodate a115

variable number of inputs. When modeling jets via their constituent four-vectors, it becomes116

necessary to only process at most N constituents, and zero-pad the input layer when processing117

a jet with a number of constituents less than N . In classifier models, this is common and118

benign, as the loss function depends only on the output of the network and the ground truth that119

it is trying to reproduce. However, in a VAE, the input layer’s neuron values are a part of its120

loss function (due to the MSE loss between the input and output layers). Therefore, the zero121

padded elements directly correlate with the value of the loss function. This introduces a direct122

correlation between the VAE loss and the number of constituents in the input jet, which can be123

difficult to remove.124

2 Variational Recurrent Neural Network125

A recurrent architecture naturally circumvents this drawback since it is designed to accommo-126

date inputs of varying length. In a Recurrent Neural Network (RNN), data is input as a sequence127

of features. Each feature has the same fixed dimensionality, yet the sequence itself can vary in128

length. The RNN is comprised of a chain of small fixed architectures, or cells, which expect as129

inputs the fixed-length feature at each element, or time-step, in the sequence. While process-130

ing the sequence, the RNN updates a hidden state at each time-step, which is carried over and131

accessed by the cell during the following time-step. The hidden state stores a long-term repre-132

sentation of information within the sequence, and is the key feature allowing RNNs to process133

sequential data of varying length. The RNN cell then acts as an encoder-decoder architecture134

which inputs the current time-step’s feature and hidden state, and outputs an updated hidden135

state, along with an output feature if desired. In the interest of performing anomaly detection136
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VRNN LHCO Results

J. Gonski14 July 2021
Figure 13. Two-prong dijet mass distributions before (left) and after (right) requiring the Event Score to ex-
ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 4� while retaining the smoothly falling background distribution.

Figure 14. Three-prong dijet mass distributions before (left) and after (right) requiring the Event Score to ex-
ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 1.5� while retaining the smoothly falling background distribution.
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ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 4� while retaining the smoothly falling background distribution.

Figure 14. Three-prong dijet mass distributions before (left) and after (right) requiring the Event Score to ex-
ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 1.5� while retaining the smoothly falling background distribution.
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•Perform bump hunt on mJJ with selection on Event Score = max of two leading jet 
Anomaly Scores 
•Dataset = background + 1% signal contamination 
➡ Enhance a 0.5σ two-prong signal excess to 4.0σ solely from an Event Score cut 
at 0.65 

➡ Enhance a 0.5σ three-prong excess to 1.5σ using the same score

No cut Event Score > 0.65

• LHC Olympics dataset: Pythia generated + 
Delphes detector simulation (no pileup) 


• Signal: 3.5 TeV Z’ → 500 GeV X + 100 GeV Y

- Two substructure hypotheses: 2-pronged and 

3-pronged X/Y decays

• Reconstruction = two large-radius (R=1.0) 
jets


- Trigger: 1 large-R jet with pT > 1.2 TeV

Benjamin Nachman

The LHC Olympics 2020: 
A Community Challenge for Anomaly 

Detection in High Energy Physics

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Lawrence Berkeley National Laboratory

bpnachman.com @bpnachman bnachman
bpnachman@lbl.gov

LHC 
Reinterpretation 

Workshop
Feb. 17, 2021

2101.08320https://lhco2020.github.io/homepage/

➡arXiv:2101.08320
11The dataset

?1

W

?2

?3

Dijet final state (allow for data-driven 
background + complex final state). 

R&D signal
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• NN trained in signal region vs. sideband is sensitive to signal 
vs. background characteristics 


- SR and SB defined in windows of mjj, each region has different 
fraction of signal
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Training Strategies

Topic Modeling/ 
Clustering

Classification 
W/O Labels

Likelihood 
Discrimination

p(x |x ∈ A) p(x |x ∈ B)

Separate out Sample 1  
from Sample 2 by  
hidden signal 

Split a histogram 
into multiple distributions 
by looking for separate 
regions

17

Typically, the goal of these methods is to look for events with 
high p(possibly signal-enriched)/p(possibly signal-depleted)

Weakly-supervised = noisy labels

e.g. Classification Without Labels 
(CWoLa), events in a signal region are 

labeled “signal” and events in a sideband 
are labeled “background”.  These labels 
are “noisy” but a classifier trained with 

them can detect the presence of a signal.

E. Metodiev, BN, J. Thaler, 1708.02949; J. Collins, K. Howe, BN, 1805.02664
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Features for 
training CWoLa 

classifier + be careful to not pay a big trails factor

Solutions: Weakly-supervised

1708.02949, 

1805.02664 

√s

In our case… 

150 per event!

Data-Driven/Weakly Supervised (CWoLa)

https://lhco2020.github.io/homepage/
https://arxiv.org/pdf/1708.02949.pdf
https://arxiv.org/abs/1805.02664
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• Select signal and background in ±25 GeV windows 
in √s around the resonance mass: SR = [675, 725)


• Train with a variety of signal contaminations: σ=0.0, 
0.5, 1.0, 2.0, 3.0, 5.0, and ∞ (eg. all S vs. all B)


➡ Significance Improvement Characteristic (SIC): can 
enhance a 0.6% signal contamination from 1.0σ to 
~10.0σ

SR

Semi-supervised

e+e- AD Results

Figure 5: Semi-supervised training results in the form of ROC (left) and SIC (right) curves
for two signals, mX = 350 GeV (top) and mX = 700 GeV (bottom) vs. background.

the 15 input variables used in the event-level training and their distributions can be found
in Appendix B.

Results are shown in Figure 7 for the weakly supervised training scenario. The inability
of the DNN to distinguish signal from background, except in the 100% signal contamina-
tion scenario, indicates that the event-level variables are suboptimal for the signal of this
study. Comparison to Figure 6, which gives the analogous result for the PFN training,
demonstrates the benefit of using high-dimensional input representations for the task of
anomaly detection. Comparable signal sensitivity is delivered by a fully supervised signal
vs. background training on event-level variables, and a PFN weakly supervised training
with only 3.1% signal contamination.

5 Future Detector Considerations

To extrapolate these results to a search in real collision data, the same method is applied
using regions defined with a measured

p
ŝ instead of one computed with truth-level quan-

tities. Two different methods for measuring the total available energy are considered. One
assumes that the ISR photon is captured by the detector, and therefore uses the measure-
ment of its energy subtracted from the incoming electron-positron

p
ŝ as a proxy for the

amount of energy available in the collision. This is referred to as the photon-measuredp
ŝ. The second is the hadron-measured

p
ŝ, which covers the scenario where the photon

– 9 –

Weakly Supervised
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• Normalization of inputs: CWoLa-trained classifier 
tested on background in SB vs. background in 
SR has minimal √s correlation (right)


• Detector features such as mass resolution and 
forward acceptance have strong impact on 
radiative return AD analyses: investigating 
different √s reconstruction measures to 
understand dependency and inform e+e- 

detector design 

Figure 4: CWoLa-trained ROC curves for background in the sideband vs. background in
the signal region, for the mX = 350 GeV signal region on the left and the mX = 700 GeV
signal region on the right.

to 10�5) learning rates was found to be suboptimal. Adagrad [98] and RMSProp [99]
optimizers were also studied, with no significant impact on the performance. The PFN was
trained for 30 epochs with a batch size of 100. A longer training time of 100 epochs was
also considered and did not strongly affect the final performance.

In the weakly supervised scenario where training utilizes events from different bins ofp
ŝ, care must be taken to ensure that the network output is agnostic to the

p
ŝ of the

events. Therefore, a per-event normalization procedure is implemented to mitigate thep
ŝ correlation. Each jet’s ⌘ and � is centered on the average value for all jets in the event,

and its pT is scaled by the sum of jet transverse momentum in the event. The efficacy
of the normalization procedure is verified by training the network to identify background
events in the signal region from background events in the sideband. Since these events
should only vary in their

p
ŝ values, the normalization procedure can be deemed functional

if the classifier is unable to discern these two classes of background events. Figure 4 shows
the result of this training, confirming that the chosen normalization is sufficiently able to
remove significant correlations of learned information with

p
ŝ.

Considerable variance in performance was observed across models with identical train-
ing scenarios. An ensemble procedure was developed to mitigate the effect of these fluctua-
tions. Each training result presented here represents the average of 50 trained models, each
with a random signal injection. Models are combined by quantile scaling the predicted val-
ues on the test set and averaging the results for all 50 models. The results should therefore
be interpreted as the expected/average sensitivity.

4 Results

The results of the training are displayed in two forms. The first is the receiver operating
characteristic curve (ROC), which shows background rejection as a function of the signal
efficiency, and demonstrates the discriminating power of the output net score. Additionally,
the significance improvement characteristic (SIC) is provided, which shows the signal sen-
sitivity as a function of signal efficiency. The SIC can be used as a proxy of how the output
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ROC: Bkg in SB vs. Bkg in SR

Figure 7: Weakly supervised training results using event-level input variables, in the form
of ROC (left) and SIC (right) curves for mX = 350 GeV (top) and mX = 700 GeV (bottom).

Figure 8: Distributions of the measured collision
p
ŝ when the outgoing photon is captured

and subtracted from the initial collision energy (left), and computed using only the final
state hadrons in the event (right)

and hadron-measured
p
ŝ, respectively. Although the sensitivity is generally diminished by

detector effects, there is still strong enhancement for a variety of signal injections, represent-
ing potential for this method in real collision data. Future innovations on hardware (e.g.
increased acceptance) and software (e.g. combining photon- and hadron-measurements)
may be able to close any remaining gaps between the truth

p
ŝ and the reconstructed

version(s).
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Figure 7: Weakly supervised training results using event-level input variables, in the form
of ROC (left) and SIC (right) curves for mX = 350 GeV (top) and mX = 700 GeV (bottom).

Figure 8: Distributions of the measured collision
p
ŝ when the outgoing photon is captured

and subtracted from the initial collision energy (left), and computed using only the final
state hadrons in the event (right)

and hadron-measured
p
ŝ, respectively. Although the sensitivity is generally diminished by

detector effects, there is still strong enhancement for a variety of signal injections, represent-
ing potential for this method in real collision data. Future innovations on hardware (e.g.
increased acceptance) and software (e.g. combining photon- and hadron-measurements)
may be able to close any remaining gaps between the truth

p
ŝ and the reconstructed

version(s).
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