Fermiab

Marco Del Tutto

Rising Stars Symposium University of Chicago 22nd September 2021

SBND-PRISM: Sampling Multiple Off-Axis Neutrino Fluxes with the Same Detector

The Standard Model of Particle Physics

The Standard Model of Particle Physics is one of the most successful theories that humankind ever produced

Despite its success, it is far from being the theory of everything and several outstanding questions remain unanswered

Marco Del Tutto

What is the Origin of the Hierarchy of Fermion Masses?

Why Are There Three Generations of Fermions?

Why is the Universe Made Wholly of Matter? (CP Violation)

> What is the Nature of the Higgs Boson?

Can the Forces Be Unified?

Does Supersymmetry Exist?

What is Dark Matter?

Fermilab

10⁹ anti-baryons

What is the Origin of the Hierarchy of Fermion Masses?

Why Are There Three Generations of Fermions?

Why is the Universe Made Wholly of Matter? (CP Violation)

> What is the Nature of the Higgs Boson?

Can the Forces Be Unified?

Does Supersymmetry Exist?

What is Dark Matter?

What is the Origin of the Hierarchy of Fermion Masses?

Why Are There Three Generations of Fermions?

Why is the Universe Made Wholly of Matter? (CP Violation)

> What is the Nature of the Higgs Boson?

Can the Forces Be Unified?

Does Supersymmetry Exist?

What is Dark Matter?

What is the Origin of the Hierarchy of Fermion Masses?

Why Are There Three Generations of Fermions?

Why is the Universe Made Wholly of Matter? (CP Violation)

> What is the Nature of the Higgs Boson?

Can the Forces Be Unified?

Does Supersymmetry Exist?

What is Dark Matter?

Grand Unification Energy?

Higher Energy

?

‡ Fermilab

What is the Origin of the Hierarchy of Fermion Masses?

Why Are There Three Generations of Fermions?

Why is the Universe Made Wholly of Matter? (CP Violation)

> What is the Nature of the Higgs Boson?

Can the Forces Be Unified?

Does Supersymmetry Exist?

What is Dark Matter?

Dark Matter: 27 % Dark Energy: 68 %

What is the Origin of the Hierarchy of Fermion Masses?

Why Are There Three Generations of Fermions?

Why is the Universe Made Wholly of Matter? (CP Violation)

> What is the Nature of the Higgs Boson?

Can the Forces Be Unified?

Does Supersymmetry Exist?

What is Dark Matter?

Neutrinos to Investigate Particles Physics Mysteries

Neutrinos are the least understood particles in the Standard Model

Marco Del Tutto

Neutrinos to Investigate Particles Physics Mysteries

Neutrinos are the least understood particles in the Standard Model

Neutrinos oscillate

Implies that neutrinos have mass This is an extension of the Standard Model

What are the masses of the neutrinos? What is the ordering of the masses?

Marco Del Tutto

Neutrinos to Investigate Particles Physics Mysteries

Neutrinos are the least understood particles in the Standard Model

Neutrinos oscillate

Implies that neutrinos have mass This is an extension of the Standard Model

What are the masses of the neutrinos? What is the ordering of the masses?

Several **anomalies** in the neutrino sector hint for neutrino oscillations at **short baselines**

> How many neutrinos exist? Are there sterile neutrinos?

 $\overset{(-)}{\nu}_{\mu} \rightarrow \overset{(-)}{\nu}_{e}$

 $\bar{\nu}_e \to \bar{\nu}_e$

 $\nu_{\mu} \rightarrow \nu_{\mu}$

LSND

Reactor Anomaly

MiniBooNE

 $\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}}$

OBSERVED LSND

 $\bar{\nu}_e \to \bar{\nu}_e$

 $\nu_{\mu} \rightarrow \nu_{\mu}$

LSND

- A 3.8 σ excess of events over backgrounds
 - was observed, compatible with $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
 - oscillations with L/E \approx 1 m/MeV

Reactor Anomaly

MiniBooNE

 $(\overline{\nu}_{\mu}) \rightarrow (\overline{\nu}_{e})$

OBSERVED LSND, MiniBooNE

 $\bar{\nu}_e \to \bar{\nu}_e$

 $\nu_{\mu} \rightarrow \nu_{\mu}$

A 4.5 (2.8) σ excess of events observed with same L/E as LSND; excess compatible with LSND within a sterile neutrino framework

 $u_{\mu}(ar{
u}_{\mu})$

LSND

- A 3.8 σ excess of events over backgrounds
 - was observed, compatible with $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
 - oscillations with L/E \approx 1 m/MeV

Reactor Anomaly

MiniBooNE

 $\tilde{\nu}_{\mu} \rightarrow \tilde{\nu}_{e}$

OBSERVED LSND, MiniBooNE

 $\bar{\nu}_e \to \bar{\nu}_e$ OBSERVED Reactor anomaly

 $\nu_{\mu} \rightarrow \nu_{\mu}$

A 3.8 σ excess of events over backgrounds was observed, compatible with $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations with L/E \approx 1 m/MeV

A 4.5 (2.8) σ excess of events observed with same L/E as LSND; excess compatible with LSND within a sterile neutrino framework

 $u_{\mu}(\bar{
u}_{\mu})$

LSND

MiniBooNE

Reactor Anomaly

A 3 σ deficit in the detected $\bar{\nu}_{\rho}$ flux was seen in past reactor experiments when compared to theory calculations

 $\tilde{\nu}_{\mu} \rightarrow \tilde{\nu}_{e}$

OBSERVED LSND, MiniBooNE

 $\bar{\nu}_e \to \bar{\nu}_e$ OBSERVED Reactor, Gallium anomalies

> $\nu_{\mu} \rightarrow \nu_{\mu}$ NOT OBSERVED

LSND

$$\nu_{\mu}(\bar{\nu}_{\mu})$$

A 3.8 σ excess of events over backgrounds was observed, compatible with $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations with L/E \approx 1 m/MeV

MiniBooNE

A 4.5 (2.8) σ excess of events observed with same L/E as LSND; excess compatible with LSND within a sterile neutrino framework

Reactor Anomaly

A 3 σ deficit in the detected $\bar{\nu}_e$ flux was seen in past reactor experiments when compared to theory calculations

Gallium Anomaly

A 3 σ deficit in the detected ν_e flux was seen as seen during calibration runs of solar neutrino experiments

The Short Baseline Neutrino Program

The Short Baseline Neutrino (SBN) program has been designed specifically to address the sterile neutrino interpretation of the experimental anomalies

> Three Liquid Argon Time Projection Chamber (LArTPC) detectors located along the Booster Neutrino Beamline (BNB) at Fermilab

(Not to scale) Marco Del Tutto

Booster Neutrino Beam

More on the Booster Neutrino Beam: <u>https://arxiv.org/abs/0806.1449</u>

3rd August 2021

Neutrino Flux at SBND

Fermilab

Neutrino Flux at SBND

$$\mathbf{v}_{\mu} \operatorname{Flux}$$

$$\pi^{+} \rightarrow \nu_{\mu} + \mu^{+}$$

$$K^{+} \rightarrow \nu_{\mu} + \mu^{+}$$

Two-body decays

$$\begin{array}{l} \nu_{e} \ \mathsf{Flux} \\ \mu^{+} \rightarrow \nu_{e} + \bar{\nu}_{\mu} + e^{+} \\ K^{+} \rightarrow \nu_{e} + e^{+} + \pi^{0} \\ K^{0}_{L} \rightarrow \nu_{e} + \pi^{-} + e^{+} \end{array}$$

Three-body decays

Different kinematics: two-body vs three body decay.

The flux of v_e has a larger angular spread than that of v_μ (at the same parent energy)

Goals of the SBN Program

Goals of the SBN Program

Neutrino-Nucleus Interactions

Millions of Interactions per Year

Precision Physics Studies

Exclusive Cross-Section Measurements

Study of Nuclear Effects

Measure Rare Interaction Channels

Light Dark Matter

Millicharged Particles

Dark Neutrinos

Heavy Neutral Leptons

Neutrino Tridents

The Short Baseline Near Detector (SBND)

The Short Baseline Near Detector (SBND)

The SBND detector

- Made of two liquid argon time ulletprojection chambers.
- 112 ton of liquid argon.
- Dimensions: 4m x 4m x 5m. ullet
- 110 m from the target position.
- SBND is currently being installed.

Fermilab

A Slightly Off-Axis Detector

The SBND detector

The detector is ~74 cm off the beamline

A Slightly Off-Axis Detector

SBND sees neutrinos from several off-axis angles (OAAs)

(Off-axis angle is calculated w.r.t. target position)

Х

View from the top of the **SBND** Detector

Ζ Marco Del Tutto

A Slightly Off-Axis Detector

SBND sees neutrinos from several off-axis angles (OAAs) (Off-axis angle is calculated w.r.t. target position)

The detector can be divided in several off-axis slices: $OAA \in [0.0^{\circ}, 0.2^{\circ})$ $OAA \in [0.2^{\circ}, 0.4^{\circ})$ $OAA \in [0.4^{\circ}, 0.6^{\circ})$ $OAA \in [0.6^{\circ}, 0.8^{\circ})$ $OAA \in [0.8^{\circ}, 1.0^{\circ})$ $OAA \in [1.0^{\circ}, 1.2^{\circ})$ $OAA \in [1.2^{\circ}, 1.4^{\circ})$ $OAA \in [1.4^{\circ}, 1.6^{\circ})$

The Off-Axis Angle (OAA)

We can select lower neutrino energies, and a more monochromatic beam, by going off-axis.

3rd August 2021

SBND-PRISM

Precision Reaction Independent Spectrum Measurement (*)

Neutrino events are divided based on the off-axis angle (OAA) region they fall in:

 $OAA \in [0.0^{\circ}, 0.2^{\circ})$ $OAA \in [0.2^{\circ}, 0.4^{\circ})$ $DAA \in [0.4^{\circ}, 0.6^{\circ})$ $DAA \in [0.6^{\circ}, 0.8^{\circ})$ $DAA \in [0.8^{\circ}, 1.0^{\circ})$ $DAA \in [1.0^{\circ}, 1.2^{\circ})$ $DAA \in [1.2^{\circ}, 1.4^{\circ})$ $OAA \in [1.4^{\circ}, 1.6^{\circ})$

Fermilab

The v_{μ} energy distribution is affected by the off-axis position

SBND-PRISM - v_{μ} / v_{e} Differences 1/2

Muon neutrino energy spectrum changes with the off-axis angle,

while the electron neutrino one stays almost the same

Muon-neutrino CC Events

higher off-axis angle → lower mean energy

Area Normalized

High event statistics in all off-axis regions

Electron-neutrino CC Events

higher off-axis angle → ~same mean energy

Area Normalized

SBND-PRISM - v_{μ} / v_{e} Differences 2/2

Muon-neutrinos CC Events

peak coincident with the on-axis position

Moving away from the beam-line axis, the number of ν_{μ} and ν_{e} interactions varies differently. While the number of ν_e events stays almost constant, the number of ν_u events decreases.

Electron-neutrinos CC Events

distribution is almost constant

(angular distribution of v_e is wider due to three-body decay)

Cosmic Ray Tagger Data

Fermilab

⊥0

Marco Del Tutto University of Chicago - Rising Stars Symposium

SBND-PRISM - Physics Opportunities

- Neutrino Oscillations
- SBND-Only Neutrino Oscillations
 - Dark Matter Searches
- Study Energy Dependence of Cross-Section
 - Interaction Model Contraints
 - Muon-to-Electron Neutrino Cross-Section Ratio
 - Study Neutrino Energy / Lepton Kinematics Relation

Sterile Neutrino Oscillations with SBND-PRISM

Fermilab

Can we make the two fluxes similar?

Sterile Neutrino Oscillations with SBND-PRISM

Fermilab

Can we make the two fluxes similar?

Can we use SBND-PRISM for SBND-only sterile

neutrino searches (without a Far Detector)?

SBND-PRISM potentially allows probing higher values of Δm^2 for sterile neutrino oscillation searches

Can we use SBND-PRISM for **SBND-only** sterile

neutrino searches (without a Far Detector)?

SBND-PRISM potentially allows probing higher values of Δm^2 for sterile neutrino oscillation searches

Testing sensitivity with:

- $\Delta m^2 = 10 \text{ eV}^2$, $\sin^2 2\theta_{\mu e} = 0.001 \text{ fm}$
- V_e appearance mode
- very conservative systematics: free norm. + 30% bin-by-bin sys. on bkg

Fermilab

 v_e coming from oscillation $v_\mu \rightarrow v_e$

v_e intrinsic from the beam (background)

We run a X² test to understand if we are sensitive to these oscillations

w/o PRISM $X^2 = 2$ background and signal are compatible (treating SBND as a we are **not** sensitive to oscillations single detector)

(treating SBND as made of

w/ PRISM $X^2 = 13$

background and signal are **not** compatible multiple off-axis sub-detectors) we are sensitive to oscillations

 $\chi^2 = \sum_{ij}^{\text{pos., bins}} \frac{(N_{ij} + \alpha T_{ij})^2}{N_{ii} + \sigma_1^2 \cdot N_{ii}^2}$

Fermilab

 $v_{\rm e}$ coming from oscillation $v_{\mu} \twoheadrightarrow v_{\rm e}$

 $v_{\rm e}$ intrinsic from the beam (background)

The v_µ and v_e fluxes behave differently going off-axis, giving rise to different signal-to-background ratios which constrains systematics

w/ PRISMX² = 13(treating SBND as made of
multiple off-axis sub-detectors)background and signal are **not** compatible
we are sensitive to oscillations

Can measure oscillations using SBND alone!

Light dark matter (sub-GeV) that is coupled to the Standard Model via a dark photon. The dark photons can be produced by neutral meson decays (pions, etas) in the target, and then decay to the dark matter.

Phys.Rev.D 100 (2019) 9, 095010

Light dark matter (sub-GeV) that is coupled to the Standard Model via a dark photon. The dark photons can be produced by neutral meson decays (pions, etas) in the target, and then decay to the dark matter.

Phys.Rev.D 100 (2019) 9, 095010

The dark matter can then travel to SBND and, through the dark photon, **scatter off electrons in the detector**.

Background

Neutrino-electron elastic scattering. Neutrinos come from two-body decays of charged (focused) mesons.

Signal

Elastic scattering electron events. Dark matter comes from three-body decays of neutral (unfocused) mesons.

Background

Neutrino-electron elastic scattering. Neutrinos come from two-body decays of charged (focused) mesons.

Signal

Elastic scattering electron events. Dark matter comes from three-body decays of neutral (unfocused) mesons.

Background

Neutrino-electron elastic scattering. Neutrinos come from two-body decays of charged (focused) mesons.

SBND-PRIMS: Neutrinos (background events) **decrease** with the off axis angle

Signal

Elastic scattering electron events. Dark matter comes from three-body decays of neutral (unfocused) mesons.

Dark matter (signal) events come from **unfocused** neutral mesons

Background

Neutrino-electron elastic scattering. Neutrinos come from two-body decays of charged (focused) mesons.

SBND-PRIMS: Neutrinos (background events) **decrease** with the off axis angle

Fermilab

Signal

Elastic scattering electron events. Dark matter comes from three-body decays of neutral (unfocused) mesons.

Dark matter (signal) events come from **unfocused** neutral mesons

Conclusions

SBND-PRISM is a new innovative way to exploit important SBND features

Closeness to the neutrino source

SBND-PRISM largely expands the physics reach of SBND in multiple directions

SBN neutrino oscillations

Dark matter searches

Being slightly off-axis

Abundance of statistics

SBND-only neutrino oscillations

Neutrino interaction modelling

• • •

