Searching for Sterile Neutrinos with IceCube

Rising Stars Symposium in Experimental Particle Physics

September 23rd, 2021

Well Established 3ν Mixing Model

Weak Eigenstates

Mixing Matrix

Mass Eigenstates

Two Neutrino Oscillation

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}(2\theta)\sin^{2}\left(1.27\frac{\Delta m^{2}[eV^{2}]L[m]}{E_{\nu}[MeV]}\right)$$
$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^{2}(2\theta)\sin^{2}\left(1.27\frac{\Delta m^{2}L}{E_{\nu}}\right)$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

$$\mathcal{V}_{1}$$

$$\int \Delta m^{2} \qquad \mathcal{V}_{2} \qquad \Delta m^{2} = 1 \text{ eV}^{2}$$

$$\mathcal{V}_{2} \qquad \sin^{2}(2\theta) = 0.8$$

$$E_{\nu} = 1 \text{ MeV}$$

PMNS matrix is commonly written in terms of rotations

$$U_{PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Model Resolved Numerous Anomalies

But new anomalies have appeared...

MiniBooNE

MiniBooNE

With oscillation model, data is inconsistent with SM mass splittings.

8

But...

 $\Delta m^2 \approx 1 \, \, {\rm eV}^2$ is inconsistent with existing 3ν paradigm.

Additional mass state would be required.

If that is the case, the additional neutrino eigenstate cannot interact weakly, thus "sterile."

3+1 Model 4 $\Delta m_{sterile}^{2} \sim 1 \ eV^{2} \qquad \square \quad \mathbf{v}_{\mu} \qquad \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{s1} & U_{s2} & U_{s3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \nu_{4} \end{pmatrix}$ ν_{s} Δm^2_{atm} What we've seen before New measurable parameters Δm^2_{solar} $\Delta m_{\text{sterile}}^2 \gg \Delta m_{\text{atm}}^2 > \Delta m_{\text{solar}}^2$

Massachusetts Institute of Technology

10

Other experiments have seen sterile neutrino-like signatures

Reactor Neutrinos

Accelerator Neutrinos

3+1 Global Fits

$$\Delta m_{41}^2 = 1.32 \text{ eV}^2$$
$$|U_{e4}| = 0.12$$
$$|U_{\mu4}| = 0.14$$
$$\sin^2(2\theta_{\mu e}) = 1.05 \times 10^{-3}$$
$$\chi_{\mathsf{BF}}^2 = 458 \text{ (506 dof)}$$
$$\chi_{\mathsf{Null}}^2 = 493 \text{ (509 dof)}$$
$$\Delta \chi_{\mathsf{Null}}^2 = 35 \text{ (3)}$$

Massachusetts Institute of Technology

But this is not a solved puzzle

A minimal sterile neutrino model requires each of the following

 $u_{\mu} \rightarrow \nu_{e} \text{ appearance}$ $\nu_{e} \rightarrow \nu_{e} \text{ disappearance}$ $\nu_{\mu} \rightarrow \nu_{\mu} \text{ disappearance}$

lceCube

IceCube

- •~1 Gigaton detector in the Antarctic ice.
- •5160 optical sensors,
 called DOMs
 •86 strings, 60 DOMs on
 each strings

Massachusetts Institute of Technology

Æ _ $\nu_{\mu} + N \rightarrow \mu + X$

Fri, 12 Nov 2010 13:14:20 UTC t = 9700 ns

Matter Enhanced Oscillations With Steriles (MEOWS)

Use the large atmospheric muon neutrino flux to conduct a novel study of sterile neutrinos oscillations utilizing the matter effects due to the Earth.

Matter Enhanced Oscillations With Steriles (MEOWS)

Use the large atmospheric muon neutrino flux to conduct a novel study of sterile neutrinos oscillations utilizing the matter effects due to the Earth.

Matter Enhanced Oscillations With Steriles (MEOWS)

Use the large atmospheric muon neutrino flux to conduct a novel study of sterile neutrinos oscillations utilizing the matter effects due to the Earth.

Atmospheric Neutrinos

Atmospheric Neutrinos

Matter Enhanced Oscillations

$$P(v_{\alpha} \rightarrow v_{\alpha}) = 1 - \sin^2(2\theta_M) \cdot \sin^2\left(1.27\Delta m_M^2 \frac{L}{E_v}\right)$$

$$\Delta m_M^2 = \sqrt{\left(\Delta m^2 \cos 2\theta - A\right)^2 + \left(\Delta m^2 \sin 2\theta\right)^2}, \ \tan 2\theta_M = \frac{\tan 2\theta}{1 - \frac{A}{\Delta m^2 \cos 2\theta}}$$

$$A = \mp \sqrt{2} E_v G_F N_N$$

$$E_{v}^{res} = \mp \frac{\cos 2\theta \cdot \Delta m^2}{\sqrt{2}G_F N} \approx \mp \frac{\cos 2\theta \cdot \Delta m^2}{0.038(\rho[g/cm^3])}$$

Plotted for:

♦ Δm_{41}^2 = 1 eV², sin²2θ₂₄ = 0.1

MEOWS - 8 year search

305,891 muon neutrino candidates analyzed

$$\sin^2(2\theta_{24}) = 0.1$$

 $\Delta m_{41}^2 = 4.5 \text{ eV}^2$

Existing analysis fits to two sterile points

 $\Delta m_{41}^2 \& \theta_{24}$

But sterile neutrino introduces *six* new parameters

 $\Delta m_{41}^2, \theta_{14}, \theta_{24}, \theta_{34}, \delta_{14}, \delta_{24}$

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{s1} & U_{s2} & U_{s3} \end{pmatrix} \begin{pmatrix} \nu_{e4} \\ U_{\mu 4} \\ U_{\tau 4} \\ U_{s4} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \nu_{4} \end{pmatrix} = \begin{pmatrix} U_{e4} \\ U_{\mu 4} \\ U_{\mu$$

What we've seen before

New measurable parameters

Existing analysis fits to two sterile points

$$\Delta m_{41}^2 \& \theta_{24} \qquad |U_{\mu4}|^2 = \sin^2 \theta_{24}$$

But sterile neutrino introduces *six* new parameters

$$\Delta m_{41}^2, \theta_{14}, \theta_{24}, \theta_{34}, \delta_{14}, \delta_{24}$$

In the analysis

$$\theta_{14} = 0 \& \delta_{14} = 0$$
 Negligible $|U_{e4}|^2 = 0$

Existing analysis fits to two sterile points

 $\Delta m_{41}^2 \& \theta_{24}$

But sterile neutrino introduces *six* new parameters

$$\Delta m_{41}^2, \theta_{14}, \theta_{24}, \theta_{34}, \delta_{14}, \delta_{24}$$

In the analysis

$$\begin{array}{l} \theta_{14} = 0 \ \& \ \delta_{14} = 0 \\ \theta_{34} = 0 \ \& \ \delta_{34} = 0 \end{array} \qquad \begin{array}{l} \text{Negligible} \\ ? \\ | U_{\tau 4} |^2 = \cos^2 \theta_{24} \cdot \sin^2 \theta_{34} \end{array}$$

What about θ_{34} ?

Increasing θ_{34} increases the strength of the effect. Therefore, $\theta_{34} = 0$ is the conservative estimate, providing an upper bound to θ_{24} .

For animation please see keynote

Allowing $\theta_{34} \neq 0$ produces

- a non-negligible effect.
- Also, introduces significant
- $ar{
 u}_{ au}$ appearance.
- $heta_{34}$ is the least bounded of
- the sterile mixing

parameters.

Expanding MEOWS with θ_{34}

Current work is to add this additional parameter to the existing MEOWS analysis.

Computational challenges of adding an additional dimension.

Improving $\tau \rightarrow \mu + \dots$ decay simulation

For animation please see keynote

Future for MEOWS?

We have a long term goal to include Cascade signatures into the MEOWS analysis. This opens up additional channels: $\nu_{\mu} \rightarrow \nu_{e} \& \nu_{\mu} \rightarrow \nu_{\tau}$ (CC) $\nu_{\mu} \rightarrow \nu_{\alpha}$ (NC) With better energy resolution compared to muon track events.

Future of Sterile Neutrinos?

Experiments like MicroBooNE and SBN will either support or kill (or somewhere in between?) the sterile hypothesis.

If the hypothesis survives these tests, a few indirect approaches can be taken:

- $0\nu\beta\beta$ experiments
- Lepton unitarity constraints

$$0\nu\beta\beta$$
 decay experiments

 $|m_{etaeta}| = \left| \mu_1 + \mu_2 e^{ilpha_2} + \mu_3 e^{ilpha_3} + \mu_4 e^{ilpha_4} \right|$

Testing Unitarity

 $t_{\alpha\beta} \equiv U_{\alpha1}^* U_{\beta1} + U_{\alpha2}^* U_{\beta2} + U_{\alpha3}^* U_{\beta3} = 0 \quad (\alpha \neq \beta; \quad \alpha, \ \beta = e, \ \mu, \ \tau).$

39

Matter Enhanced Oscillations

Muon rate from Northern Hemisphere

$$E_v^{res} = \mp \frac{\cos 2\theta \cdot \Delta m^2}{\sqrt{2}G_F N} \approx \mp \frac{\cos 2\theta \cdot \Delta m^2}{0.038(\rho[g/cm^3])}$$

Current MEOWS energy range is 500 GeV – 10 TeV

Massachusetts Institute of Technology

Expected Observation

48

No sterile neutrino

With Sterile Neutrino

