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What happens when we allow a

dissipative dark sector to dominate
before BBN?
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We found...
N4 @

> - A nhew mechanism to produce dark compact objects

- A new way to form primordial black holes ) @

- Late time collapse into low mass black holes
- Late time decay of low mass black holes > @
- Dissipative dark sector can be all of dark matter

- Dark halo size set by features of the dark matter
model
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Key Ingredients

Dark particle to Dark mediator to An exit strategy to
dominate the energy dissipate energy and return the universe to
density of the help with structure radiation domination
Universe Collapse
“*Dark electron” “Dark photon”
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Asymmetric fermion Heavy vector



Dark particle to
dominate the energy
density of the
Universe

“Dark electron”
m, > 10* GeV
Asymmetric fermion

Key Ingredients

Dark mediator to
dissipate energy and
help with structure
collapse

“Dark photon”
m, > 10~ GeV
Heavy vector

An exit strategy to
return the universe to
radiation domination

E—

Quick period of thermal
inflation

Rapid expansion dilutes y

Field decays to standarad
model



The dark sector model
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Original model in Chang et al 2019



The dark sector model
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Scalar field potential for thermal inflation
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Evolution of dark electron halos during early matter
domination
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Slight over densities grow
linearly with the
expansion of the universe
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Returning to Standard Cosmology
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Thermal Inflation Halo collapses to a
dilutes dark matter Halo continues to cool black hole or
and returns universe and compactly via fragments into
to Standard model dark bremsstrahlung pressure supported

radiation domination dark compact objects



Final ev
oluti
tion of dark electron h
(zoomed in) los ap = 0.1
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Delayed Primordial Black Holes

Reducing &, slows cooling and collapse

Can lead to “late” collapse and evaporation of black holes
T



Delayed Primordial Black Holes??
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Conclusions »
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) .
>  Many of the tools used for star and galaxy formation are relevant to the dark
sector once we introduce self interactions

* A dissipative dark sector can dominate the universe before BBN and lead to
the creation of black holes and dark compact objects

* Predictions for the size and evolution of these objects follows
straightforwardly from one’s choice of dark matter model
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Final evolution of dark electron halos
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How much of the dark matter is in compact structure?

Answer: The o =25y~ 107>
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How much of the dark matter is in compact structure?

Answer: The

fraction of mass Phase transition

in perturbations cuts off growth
that have time to of small

form halos perturbations

before EMDE before they form
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Future work

* Press Schechter estimate of PBH / MACHO spectrum
 More careful treatment of fragmentation process

* Explore multiple matter domination “exit strategies™

* |nclude long range interaction case

* Explore impact of dark radiation emitted during collapse



Trajectory of an Example Halo
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Limits on small black holes
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Black holes radiate + evaporate

Smaller black holes emit hotter
radiation and evaporate faster

My S 10'*g evaporate within
the lifetime of the universe

Source: “Constraints on Primordial Black Holes” Carr et al. (2021)



Limits on “heavy” PBH (and MACHO) abundances
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Source: A Brief Review on Primordial Black Holes



