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We know that Dark Matter exists 2



From the CMB:  ΩDMh2 = 0.12 3
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What does it mean for dark matter 
phenomenology?
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What if Dark Matter mixes with another particle?
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Dark matter may also be similarly produced 
through oscillations
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χ

ROMPS!
(Rapidly Oscillating Massive Particles)
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Forward scattering modifies the dispersion of …ψ
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…and therefore its effective mass in the 
plasma.
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In-medium effects result in a temperature 
dependent mixing angle!
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Collisions spoil the coherence between  and ψ χ

.. and Damp the coherent 
oscillations

but can also induce conversions!

Scattering Induced 
Incoherent production
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- Track quantum amplitudes,  
Oscillations are coherent processes!

ROMPS are interesting dark matter candidates 
phenomenologically different from freeze-in and 

freeze-out

2

freeze-In/Freeze-out ROMPs
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ROMPS are interesting dark matter candidates 
phenomenologically different from freeze-in and 
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freeze-In/Freeze-out ROMPs

- Incorporate the effect of 
finite temperature and 

density of the background

Assume that everything 
happens in a vacuum
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But how does one calculate the Dark matter 
relic abundance accounting for 
- coherent and incoherent effects  

- Interactions with the background  
- Resonances in the parameter space
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Need to quantify:
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Need to quantify:

Finally time to talk about couplings!
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Dim 6: ℒ(6)
V = (ψ̄γμF)gμν(F̄γνψ) :

tan 2θm =
2m2

ψχ

m2ψ + Δm2
T − m2χ

Δm2
T ∼ T2

Λ2
1
T

(nF − nF̄)

May be small!
Vector Interactions: Phenomenology
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Vector Interactions: Phenomenology
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Takeaways
1.  Oscillations can be an efficient mechanism for 
dark matter production 

2.  Romps are phenomenologically different from 
traditional dark matter candidates!

- Production sensitive to coherent effects! 
- New temperature scale for production! 
- Impact on DM momentum distribution!

3. The ROMP framework can be easily generalized 
to well-established dark matter models
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Outlook
1.  establish the phenomenology of other effective 
operators such as scalar four-fermi operators

2. Work out constraints: 
A. Structure formation  
B. Collider searches 
C. Indirect searches for decays
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 oscillates into  with a probability given by:ψ χ
fχ

fψ,0
= Pψ→χ ∼ sin2 θvac (1 − cos ωosct)
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In a medium, without collisions:
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