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WE KNOW THAT DARK MATTER EXISTS

: 03{&&
B g
v A od
g y. & -~ -
Q".(é .\ S\/ N
:-,:."3}. ":. s ) * -’ .
. P
R ot - 2
) ‘ué s
“ s
o ¢
¢ Sc?s;;‘"
\Q\@(G \)C:\




FROM THE CMB: Q12 = 0.12
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KEY POINTS:

When and how can we break these
assumptions?

. Assume that % | TECLU Y |
everything happens in a < | —

What does it mean for dark matter
phenomenology?
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WHAT IF DARK MATTER MIXES WITH ANOTHER PARTICLE?
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WHAT IF DARK MATTER MIXES WITH ANOTHER PARTICLE?
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DARK MATTER MAY ALSO BE SIMILARLY PRODUCED
THROUGH OSCILLATIONS
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START OFF WITH 1/ IN THE EARLY UNIVERSE,
GENERATE A ; DENSITY
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THE PROBABILITY OF CONVERSION IS QUANTIFIED BY THE
AMOUNT OF MIXING
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THE PROBABILITY OF CONVERSION IS QUANTIFIED BY THE
AMOUNT OF MIXING

O—~—0

l//)(+h C.

Parameterize in terms (l/f) _ cos, —sind, (l//)
of an angle A / favor S1n ‘9() COS ‘9() A/ mass ,
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IN A VACUUM, ;v CONVERTS INTO / WITH A
PROBABILITY GIVEN BY

P, = sin”26y(1 — cos m,.1)
)

Oscillation frequency
set by Am? = mllzj — m)?
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THE UNIVERSE IS NOT A VACUUM...

“FORWARD SCATTERING"” “COLLISIONS”

(y maintains its momentum) W INTERACTS WITH THE (Such as annihilations)
PARTICLES IN THE PLASMA




FORWARD SCATTERING MODIFIES THE DISPERSION OF V...
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FORWARD SCATTERING MODIFIES THE DISPERSION OF V...

...and therefore its effective mass in the
plasma.

m2
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IN-MEDIUM MIXING ANGLE MODIFIED!
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FORWARD SCATTERING MODIFIES THE DISPERSION OF V...

...and therefore its effective mass in the
plasma.
= m2+ Am?

/s T

2
m y,medium

IN-MEDIUM MIXING ANGLE MODIFIED!

2m?
"FORWARD SCATTERING"” tan 20, = I A

(y maintains its momentum) mllzj + AWI% — Wl)%

S

Function of temperature!
(background fermion density)
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---POTENTIALLY ENHANCING THE MIXING ANGLE
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---POTENTIALLY ENHANCING THE MIXING ANGLE
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In-medium effects result in a temperature
dependent mixing angle!
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COLLISIONS SPOIL THE COHERENCE BETWEEN y/ AND

.- AND DAMP THE COHERENT
OSCILLATIONS
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COLLISIONS SPOIL THE COHERENCE BETWEEN y/ AND

.- AND DAMP THE COHERENT BUT CAN ALSO INDUCE CONVERSIONS!

OSCILLATIONS SCATTERING INDUCED
INCOHERENT PRODUCTION
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ROMPS ARE INTERESTING DARK MATTER CANDIDATES
PHENOMENOLOGICALLY DIFFERENT FROM FREEZE-IN AND
FREEZE-OUT

\
- Track quantum amplitudes,
f - @ Oscillations are coherent processes!

FREEZE-IN/FREEZE-OUT

<




17

ROMPS ARE INTERESTING DARK MATTER CANDIDATES
PHENOMENOLOGICALLY DIFFERENT FROM FREEZE-IN AND
FREEZE-OUT

- Incorporate the effect of
finite temperature and
density of the background

Assume that everything
happens in a vacuum

FREEZE-IN/FREEZE-OUT
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BUT HOW DOES ONE CALCULATE THE DARK MATTER
RELIC ABUNDANCE ACCOUNTING FOR

= COHERENT AND INCOHERENT EFFECTS
- INTERACTIONS WITH THE BACKGROUND
- RESONANCES IN THE PARAMETER SPACE




SOLVE A QUANTUM KINETIC EQUATION FOR ROMP
POLARIZATION
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SOLVE A QUANTUM KINETIC EQUATION FOR ROMP
POLARIZATION

ROMP polarization with

P, =f,.p)—1,p)
( Py = 1,(p) +1,p)

» )y
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ROMP mixing
(sin20 X + cos 207Z)

Damping
D~T

w—everything

V=w
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SOLVE A QUANTUM KINETIC EQUATION FOR ROMP
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SOLVE A QUANTUM KINETIC EQUATION FOR ROMP
POLARIZATION

Accounts for
incoherent
effects

(quantum probability)

dP ~.,
d -
Accounts for
coherent
effects

(quantum amplitudes)
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NEED TO QUANTIFY:
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NEED TO QUANTIFY:

FINALLY TIME TO TALK ABOUT COUPLINGS!
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VECTOR INTERACTIONS: PHENOMENOLOGY |

May be small!
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TAKEAWAYS

1. OSCILLATIONS CAN BE AN EFFICIENT MECHANISM FOR
DARK MATTER PRODUCTION

2. ROMPS ARE PHENOMENOLOGICALLY DIFFERENT FROM
TRADITIONAL DARK MATTER CANDIDATES!

- Production sensitive to coherent effects!
- New temperature scale for production!
- Impact on DM momentum distribution!

3. THE ROMP FRAMEWORK CAN BE EASILY GENERALIZED
TO WELL-ESTABLISHED DARK MATTER MODELS







OUTLOOK

1. ESTABLISH THE PHENOMENOLOGY OF OTHER EFFECTIVE
OPERATORS SUCH AS SCALAR FOUR-FERMI OPERATORS

2. WORK OUT CONSTRAINTS:

A. STRUCTURE FORMATION
B. COLLIDER SEARCHES
C. INDIRECT SEARCHES FOR DECAYS
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dP I - .
— =V, . XP — D23 Pz

IN A VACUUM:
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dP :
IN A MEDIUM, WITHOUT COLLISIONS: — =V, x P — [DP<E P, 2

dr

Production  (f,/f, ()

Time
t/ tOSC

Mixing angle is a function of temperature, and may cross a resonance!
If ot > t,.. adiabatic conversion!

Animation Credit: D. Dunsky
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