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Dark Matter particle y (~1 GeV)

Ultralight scalar mediator ¢

1 , 1

LD 5(5’“(15) 5

Attractive Yukawa Potential between DM particles

mi¢2+>_< (i 0u — my) X—gxPXX

a _, _
Vir)= — /2 o = gi/47r A= m¢1

Body of DM particles source classic potential

N
B(r) = Ny V(r) = ==X

Contact interaction with the SM
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Effective capture radius increases

Relativistic boost at surface
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Higher density probes weaker couplings
Can give insight into DM density profile

2000 .
a=4x 1073
17501 = A= 100R
= - -Jupiter
150 T
S Local
;:, Jurkert POSItlon
= 1000 1 k \ l
S 750 +--------- —
F*) \
500 F--========= -
250
1073 102 10~ 10° 10!

Galactocentric Distance (kpc)

M =35-55 MJupiter R = RJupiter Age =10 Gyr 99% Capture

14



SM Cross Section Sensitivity

o1 AR

e Ty (N

15



SM Cross Section Sensitivity

o1 AR

Long range force greatly increases capture probability

T AN

15



SM Cross Section Sensitivity

o1 AR

Long range force greatly increases capture probability
Allows for very low SM cross sections

T AN

15



SM Cross Section Sensitivity

Long range force greatly increases capture probability
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Striking and easily detectable Dark kinetic heating signals
e Can already make exclusions

Sharp probe of the galactic DM distribution

DM capture is extremely efficient
* Probe of very small DM-SM cross sections

Various objects can be used to observe complementary
regions of parameter space
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Thermalization Time Scale

el AL

P Ty NN

We estimate the heating timescale based on the heat
capacity of the target material

dlr . .
CVE — E)( — Ecool

Blackbody cooling
For a Brown Dwarf we use an ideal gas heat capacity

NSM
CV:F_l F=7/5

Assuming fixed energy injection rates, we find that heating
is effectively instantaneous
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FIG. 5. Temperature evolution for a benchmark 55 Jupiter-mass brown dwarf and Jupiter, assuming fixed energy injection
rates. The dashed line indicates the initial temperature assumed. Each colored label shows the final equilibrium temperature
reached for the given line.




