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Dark Matter Model

Dark Matter particle   (~1 GeV)χ
Ultralight scalar mediator ϕ

Attractive Yukawa Potential between DM particles

Body of DM particles source classic potential

Contact interaction with the SM 
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Difference from Usual Dark Kinetic Heating

Effective capture radius increases 
Relativistic boost at surface 

χ χ
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DM Accumulation and Heating

Assume energy is dissipated as a black body

Flux Effective Area Probability for capture

(More on this later)

eκt

κ = α × f (λ, M, R, . . . )

Tχ ∝ eκt
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Heating an Example Brown Dwarf

Exponential dependence on coupling strength 

Heating at λ ≥ RBrown Dwarf
Upper limit on changing force range

R = RJupiter

α ∼ 10−27λ = 100RJupiter

Age = 10 Gyr 99% capture     Local DM density

RJupiter

M = 55 MJupiter
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Can Already Set Limits!

Coldest known Super-Jupiter

Implies constraints:
 α ≤ 3.7 × 10−27 − 8.6 × 10−26

λ ≤ (90 − 100)RJupiter

If older than expected, could 
also be modeled as a positive 
signal
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M = 35 − 55 MJupiter R = RJupiter Age = 10 Gyr 99% Capture

Local 
Position
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In the presence of a long rang force in the dark sector…

Striking and easily detectable Dark kinetic heating signals 
• Can already make exclusions 

Sharp probe of the galactic DM distribution 

DM capture is extremely efficient 
• Probe of very small DM-SM cross sections 

Various objects can be used to observe complementary 
regions of parameter space
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Thermalization Time Scale

We estimate the heating timescale based on the heat 
capacity of the target material

For a Brown Dwarf we use an ideal gas heat capacity 

Assuming fixed energy injection rates, we find that heating 
is effectively instantaneous

Cv
dT
dt

= ·Eχ − ·Ecool

Blackbody cooling

Cv =
NSM

Γ − 1 Γ = 7/5



Thermalization Timescales


