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Epce COMPUTING

o “Edge computing is a distributed computing framework that brings enterprise
applications closer to data sources such as loT devices or local edge servers.”

—IBM
* |n other words, it refers to data processing very close, if not on the site of,
data acquisition.
e |tis efficient, low-latency and scalable.
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ExampLE: T RAFFIC LicHT CONTROL

» Key problems:

» |atency: observation and decision are time-delayed, but many times traffic
flow needs immediate attention

« Scalability: central facility can only process a number of crossroads,
prioritizing over some and neglecting others by choice

 Power Consumption
e Data transmission

e Solution:

 Data processing “on the edge”
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T'HE NEUTRINO 1 ELESCOPE ANALOGY

* Processing: In the detector, we trigger on local coincidences; in the local lab,
we apply simple line fit or regression methods

e Scale:

 Data transmission: we select the triggered/filtered data and send them to a
central facility for further, more complicated reconstruction and treatment

 Power consumption: we do not require (nor do we have access to) a lot of
power on the site, but we have huge supercomputer clusters in a centralized
location
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T'HE NEUTRINO 1 ELESCOPE ANALOGY

o | atency: In the detector, we trigger on local coincidences; in the local lab, we

apply simple line fit methods. We are not aware of interesting signals that
require sophisticated treatment until we see the data in the centralized facility.

e Scale:

 Data transmission: we select the triggered/filtered data and send them to a
central facility for further, more complicated reconstruction and treatment

 Power consumption: we do not require (nor do we have access to) a lot of
power on the site, but we have.huge supercomputer clusters in a centralized

location

 As we move forward to larger detectors, pressure on both data transmission
and power consumption we be further exacerbated, forcing us to postpone
(even give up) transporting and processing a larger fraction of data.
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ReALizATION VIA EDGE TPUS

* Features that enable edge computing
for us:

| ow power consumption: 2 watts

* \ersatile utilization and coding:
general-purpose computing chip

® Specifically engineered for

speeding up ML inference
(enabled by MXUs)
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DirricurTIES TO OVERCOME

e [ypes of operations and data format
allowed:

e > 3-dimensional tensors not allowed: A
convolution limited to 2 dimensional grid DeepCore
data with an extra channel dimension

Upper
DeepCore

Lower
DeepCore

Main Array

IceCube Collaboration
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DirricurTIES TO OVERCOME

e [ypes of operations and data format
allowed:

e 3-dimensional tensors not allowed:
convolution limited to 2 dimensional grid
data with an extra channel dimension
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e We convert to Recurrent Neural Network

MJ, Y. Hu, C.A. Arglelles
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Rethink: Time-series “Speech” problem
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to close opened
doors

Door Is closed,

A door is opened  Disaster emerges Disaster is avoided

It is a fantasy movie reflecting upon the people, places and
assoclated emotions and histories surrounding natural disasters
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DirricurTIES TO OVERCOME

e [ypes of operations and data format
allowed:

e > 3-dimensional tensors not allowed:
convolution limited to 2 dimensional grid
data with an extra channel dimension

0.34 5.64

* We convert to Recurrent Neural Network .., .. .,

0.68 1.43

* Precision of computation:

* Only 256 integers are allowed in real- FP32
time inference on a TPU. R
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DirricurTIES TO OVERCOME

e [ypes of operations and data format
allowed:

e > 3-dimensional tensors not allowed:
convolution limited to 2 dimensional grid
data with an extra channel dimension » . » ) . .
! - 1

* We convert to Recurrent Neural Network | .., ., ., s ow

Quantization

* Only 256 integers are allowed in real- FP32 INT8
time inference on a TPU. T ——

* Precision of computation:

 We apply quantization to the weights
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DEMONSTRATION ON RECONSTRUCTION | ASK

» We demonstrate the feasibility of edge £15- Lcetlex
computing by performing an angular g
reconstruction task on simulated data. The 5
network is capable of recovering a good e
resolution despite the restriction on data ER
formatting and precision. = \ — :
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DEMONSTRATION ON RECONSTRUCTION | ASK

e ... and at an astonishing power efficiency
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Hardware Architecture
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FuTture PROSPECTS

The reconstruction task is chosen to demonstrate feasibility, but it is not the
only task (not even a good task) for edge computing to shine. Here are some
future prospects of such a technology:

Real-time data processing: trace/waveform-based in-detector triggering
system

Data compression: generative model for encoding data to alleviate
transmission limitations

Any large-scale experiment with limited power access and data bandwidth
(e.g. satellites)
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Thank you!
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Horb oN...

 These are come caveats and concerns that might be on your mind:
e Q: Why do we need these TPUs in the first place?
* A: We don’t necessarily need them, but they will help a lot
* Q: (ctnd) Why don’t we just go with GPUs in the local on-site laboratory?

* A:ltis a great idea. Another paper has explored the option of accelerating reconstruction on GPU, see F.
Yu et al. Even In this case, a lower-level TPU implementation would make the pipeline even more
scalable.

 Q: Do TPUs take full control over how the data is processed from the lowest level?

* A: No, it is possible to implement a “seatbelt” that circumvents the TPU treatment of trace/pulse data.
(Ironically) that can be implemented too on the TPU thanks to its coding versatility.

* Q: You have shown TPUs work on simulated hit-level data, but you are advocating for TPUs to be employed
on DOMs, how do you know a network on trace-level would also work post-quantization?

* A: Unfortunately, we do need further investigation and algorithm development before claiming this
technology to be ready. We still got a long way to go...
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