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[ndirect detection

- Dark matter annihilation/decay in the Universe

- Sequential photons, neutrinos, cosmic rays could be detectable on
Earth
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T'he WIMP window

- Thermally produced WIMP dark matter is not (yet) ruled out, but the
window is getting smaller
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Fermi LAT search for WIMP

- LAT is a pivotal tool to search for WIMP DM thanks to its exceptionadl
sensitivity in the GeV range

- Recent stacking analysis of dwarfs is ruling out thermal WIMP
oarameter space
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Fermi LAT search beyond WIMP

- Fermi LAT is sensitive in GeV energies, so usually not used for heavy
dark matter beyond the WIMP mass range
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High-energy e+/e- from heavy dark matter

- For WIMP-like dark matter, a substantial portion of its energy budget
is annihilated/decayed into electrons and positrons (depending on
the channels)

- These high-energy e+/e- from DM are often overlooked in
conventional DM searches using gamma rays
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Secondary emissions from HDM e+/e-

- High-energy e+/e- inevitably lose energies in interstellar medium and
generate secondary gamma rays

- |[nverse Compton scattering

- Synchrotron radation
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Power of the secondary

- By including secondary emission from DM e+/e-, we can broaden the
LAT's DM search to include heavy candidates beyond WIMP
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Halo model of galaxy clusters

Galaxy Group J-factors

- Galaxy Group J-factors
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Halo model of dwart galaxies

- Dark matter distributions of dwarfs includes truncations (caused by
tidal stripping from MW)

- Use Extended Press-Schechter model to evaluate dSph halo
profiles (p,, ., 1)

- This in general yields a smaller J-factor
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[njection spectra

- Use HDMspectra to calculate the injection spectra of HDM
- Improved HDM spectra from TeV to the Planck scale

. |Includes full electroweak interactions
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Secondary spectra

. Solve the Boltzmann equations of gamma rays and e+/e-

electromagnetic cascades
. Inverse Compton, Synchrotron, Pair production

- Diffusion is ignored for such high energy e+/e-
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[njection and secondary spectra

— m, = 10° GeV — m, = 10% GeV
—— m, =107 GeV

—— m, =10 GeV

—— m, =107 GeV
—— m, = 10" GeV

108

- Expected spectra at Earth

+ Dracodwarf, B=1 uG
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Fermi data analysis

- 14 years of Fermi data (100 MeV to 1 TeV)

- ULTRACLEANVETO class for galaxy clusters

« SOURCE class for dwarfs (for their smaller sizes)

- 7/ nearby galaxy clusters:

. Virgo, Centaurus, Norma, Persus, Coma, Hydra, Fornax

. 8 classical dwarf spheroidal galaxies (dSphs):

- Carina, Draco, Fornax, Leo |, Leo ll, Sculptor, Sextans, Ursa Minor

. Profile likelihood method to set 95% C.L. limits for DM annihilation
cross section or decay lifetime
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Constraimnts

Draco w/ cascades Draco w/ cascades

Draco w/o cascades
* VERITAS (2023)
- MAGIC (2022)
HAWC (2018)
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Constraints on HDM annihilation from Draco dwarf

- With secondary, Fermi limits are more stringent than other gamma-ray
INnstruments
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Constraimnts

/" —— Virgo (This Work)
——— Centaurus (This Work)
——- HAWC (2021)

—-- MAGIC (2018)
IceCube (2021)

—— Virgo (This Work)

——— Centaurus (This Work)

——- HAWC (2021)

—-- MAGIC (2018)
IceCube (2021)

- Constraints on HDM decay from galaxy clusters (Virgo and
Centaurus)

- Again, including secondary provides competitive limits
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oystematic uncertainty:
Varylng magnetic field

— m, =10 GeV
—— m, =107 GeV
m, = 10" GeV
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- Varying magnetic field in the reasonable range alters the constraints
by up to one order of magnitude

.+ Dracodwarf B=1—-10 uG
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oystematic uncertainty:
Extended analysis vs point-source analysis

- We campare constraints by assuming the dwarfs as extended and
point-like sources

- Extended analysis vields slightly weaker constraints

- Consistent with previous work
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oummary

- We have set competitive constraints on heavy dark matter

annihilation/decay using Fermi data by including secondary gammoa
rays caused by dark matter e+/e-.

- Our results are robust while considering different systematic
uncetainties.

- Including secondary should be a norm
- |In case of non-detection, constraints are enhananced

. |In case of detection/excess, spectra are altered
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