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How are normal stars formed?

e CDM halo with 6 > 1 deep in
matter-domination

e Baryons fall into the CDM
potential well

T
-
-

-y

e They collapse into a disk due to
interactions and their angular
momentum
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e Fragments due to rapid cooling

e Each blob forms a stable
compact object

[ Need interactions, especially cooling}




How are axion stars formed?

e Different Hubble patches after
inflation



How are axion stars formed?

Different Hubble patches after
inflation

If PQ symmetry is broken after
inflation, Hubble patches pick
different initial values

0 € (—m,m)

Axions can have large
perturbations at small scales in
the early Universe

Yields a white-noise power
spectrum



AXxion minihalos

e Axion minihalo (minicluster) forms
from the large perturbations early

times
Q Q e Such minihalos are already light:

eV 0.51
Mh,C ~ 10_14 M@ (l’l )

ma
Q for QCD axions

Mass distribution of minihalos can
be obtained from the Press-
Schechter formalism




AXion stars

e Stable configuration of axion fields
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* Form and grow after one
/ relaxation time
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{ Gravitational interaction is enough ]

e The mass of axion star is
determined by m,, M, and t



Goal of this work

» Getting the mass function of axion stars needs heavy
numerical simulations, especially the contribution from
axion strings

* We propose a reasonable way to calculate the mass
function analytically with the white-noise part

* We also provide constraints on axion masses from the
mass function



We consider two axion models

e QCD axion
> Solves the strong CP problem

Aqcp 4
© mg(T) ~mg(0) (F22) for T > Agep

> Besides this, we can still ignore the interactions other than
gravity

e ALP (Axion-like particle)
> We ignore all the interactions

> The mass of axions does not depend on the temperature

o Starts to oscillate at its zero-temperature mass



To get the axion star mass analytically

e We consider axion minihalos at matter-radiation
equality and let axion stars evolve inside minihalos for
one Hubble time

 Matter-radiation equality because t; ~ t,,

e One Hubble time because merger of minihalos
increase the relaxation time and axion star formation
ceases



To get the axion star mass analytically

e We consider axion minihalos at matter-radiation
equality and let axion stars evolve inside minihalos for
one Hubble time
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AXion star in minihalos

[ QCD Axion ]
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Axion star mass functions (QCD axion)
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Axion star mass functions (ALP)
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ALP mass constraints
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* We put constraints on ALP masses from heating of
ultra-faint dwarfs (See Hari’s talk)



Conclusions

e We calculate axion star mass function
analytically

e The resulting mass function gives constraints on
axion masses via heating of ultra-faint dwarf
galaxies

* The mass function can be used for future
gravitational searches of axion stars
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