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Polar ice sheets are ideal detection media for ultra-high energy neutrinos (UHE-ν) Eν > 10 PeV

• Transparent to radio waves in the MHz – GHz regime - attenuation length Lα = O(1 km) at 100 MHz to 500 MHz 
• Allows for large volumes of ice to be instrumented
• Antennas are also far cheaper than optical modules
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Askaryan emission
• Build-up of excess negative charge in the 

medium
• Coherent radio emission produced at the 

Cherenkov angle θC to the cascade 
direction defined by the refractive index (θC 
= 56)

• Experiments searching for in-ice Askaryan: 
RICE, ARA, RNO-G, ARIANNA, ANITA, 
PUEO, IceCube-Gen2 Radio

Polar ice sheets are ideal detection media for ultra-high energy neutrinos (UHE-ν) Eν > 10 PeV

• Transparent to radio waves in the MHz – GHz regime - attenuation length Lα = O(1 km) at 100 MHz to 500 MHz 
• Allows for large volumes of ice to be instrumented
• Antennas are also far cheaper than optical modules
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Radar-Echo method: 
• Ionization trail persists briefly after UHE-ν cascade →acts as a reflective object for in-ice 

radar. 

• Method is currently being tested in the field using UHE cosmic rays: Radar Echo 

Telescope for Cosmic Rays (RET-CR)

•  Verification of the method in nature will facilitate the development of a future RET-N 

• See Dylan Frikken’s talk - HE Astro / Gravitational Waves II (08/26)

Polar ice sheets are ideal detection media for ultra-high energy neutrinos (UHE-ν) Eν > 10 PeV

• Transparent to radio waves in the MHz – GHz regime - attenuation length Lα = O(1 km) at 100 MHz to 500 MHz 
• Allows for large volumes of ice to be instrumented
• Antennas are also far cheaper than optical modules
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Firn Layer

Firn: intermediate stage between fresh fallen 

snow and glacial ice

• 100 – 150 m deep in Greenland and 

Antactic ice caps
• Assuming constant accumulation and 

temperature: 
𝜌 𝑧 = 𝜌𝑖 + Δ𝜌 𝑒−𝑘𝑧

• Densification rate k changes due to 
different dominant process 
• 0 < z < z550 – ‘Shallow Firn’
• Z550 < z < z800 – ‘Deep Firn’
• z > z800 – ‘Glacial Ice’

• The refractive index was found empirically 
to be linearly proportional to the firn 
density [Kovacs et al. 1994]:

𝑛 = 1 + 𝐴(𝜌[𝑔/𝑐𝑚3])

RET-CR & In-Ice Askaryan Detectors have antennas within or immediately below the ‘firn layer’
‘Shallow Firn’

‘Glacial Ice’

‘Deep Firn’

Buizert & Helsen, Glaciers and Ice Sheets in 
the Climate System, Chapter 11 (Springer)

Firn density profile at Site A, Greenland (1988) – 
Alley & Koci (1988) – Annals of Glaciology.
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Firn Variation and Evolution
This simple description of Firn is complicated by seasonal fluctuations in temperature:
• Temperature variation leads to fluctuations in firn density
• Episodic surface melting events & rainfall
These lead to the formation of refrozen ice layers & density fluctuations → Strongest in the shallow firn layer (z < 15 m at 
Summit)

Monthly surface air temperature at Summit, Greenland

Surface Melt Events

Variation of DensityPredicted Density from 
Community Firn Model
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Firn Variation and Evolution

Monthly surface air temperature at Summit, Greenland

Surface Melt Events

Average Variation of Density
[2010-2019]

Predicted Density from 
Community Firn Model

Shallow firn (z < 15 m): 

Δ ρRMS ~ 4—12 kg/m3 

Deep firn (z > 15 m): 

Δ ρRMS < 4 kg/m3 

This simple description of Firn is complicated by seasonal fluctuations in temperature:
• Temperature variation leads to fluctuations in firn density
• Episodic surface melting events & rainfall
These lead to the formation of refrozen ice layers & density fluctuations → Strongest in the shallow firn layer (z < 15 m at 
Summit)

Firn Variation and Evolution
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Simulation Study: Summit, Greenland

Goal: Simulate radio propagation from a deep source to a set of receivers at depths 0 m < z < 200 
m, for a geometry of 1km depth x 1km radius (comparable to the attenuation length!)
→ Quantify variation in out E-field trace at RX - 𝑬𝑹𝑿(𝒕) for n(z) profiles from different times

Analysis parameters: 
• Peak amplitude: ERX,max for direct (D) and reflected/refracted (R) signal
• Time delay between D and R signal:   ΔtDR = tR - tD 

• Fluence: 𝜙𝑅𝑋
𝐸 = 𝜖𝑐∫ 𝐸𝑅𝑋

2 𝑡 𝑑𝑡

Radio Simulation Codes (see backup slides for more details):
• MEEP: Direct solution of Maxwell’s equations in a geometric grid (FDTD method) 

• Most accurate method but computationally expensive (requires grid resolution Δx ≤ 
λ/10)

• paraProp: Parabolic-wave approximation of Maxwell’s equation within cylindrically symmetry 
volume

• Accurate within ‘paraxial angle’ to the horizontal direction → computationally efficient

Variable firn density over time may change the properties of neutrino-induced radio signals

To investigate this effect, we use the firn layer at Summit, Greenland as a case study.



8/29/2024 A. Kyriacou - akyriacou@ku.edu 10

Simulation Study: Summit, Greenland

Goal: Simulate radio propagation from a deep source to a set of receivers at depths 0 m < z < 200 
m, for a geometry of 1km depth x 1km radius (comparable to the attenuation length!)
→ Quantify variation in out E-field trace at RX - 𝑬𝑹𝑿(𝒕) for n(z) profiles from different times

Analysis parameters: 
• Peak amplitude: ERX,max for direct (D) and reflected/refracted (R) signal
• Time delay between D and R signal:   ΔtDR = tR - tD 

• Fluence: 𝜙𝑅𝑋
𝐸 = 𝜖𝑐∫ 𝐸𝑅𝑋

2 𝑡 𝑑𝑡

Radio Simulation Codes (see backup slides for more details):
• MEEP: Direct solution of Maxwell’s equations in a geometric grid (FDTD method) 

• Most accurate method but computationally expensive (requires grid resolution Δx ≤ 
λ/10)

• paraProp: Parabolic-wave approximation of Maxwell’s equation within cylindrically symmetry 
volume

• Accurate within ‘paraxial angle’ to the horizontal direction → computationally efficient

Variable firn density over time may change the properties of neutrino-induced radio signals

To investigate this effect, we use the firn layer at Summit, Greenland as a case study.



8/29/2024 A. Kyriacou - akyriacou@ku.edu 11

Simulation Chain

Refractive Index:
Community Firn Model (CFM)
• Density profiles derived 

using glaciological 
modelling software:

• Community Firn Model → 
based on climate data from 
Summit

• Depth grid size: 10 cm
• Outputs from each month 

from 1980 to 2020



8/29/2024 A. Kyriacou - akyriacou@ku.edu 12

Simulation Chain

Source signal:
Analytical model of Askaryan pulse from 1018 eV 

hadronic shower
- Alvarez-Muniz & Zas - Phys.Lett.B 434 (1998)

Refractive Index:
Community Firn Model (CFM)
• Density profiles derived 

using glaciological 
modelling software:

• Community Firn Model → 
based on climate data from 
Summit

• Depth grid size: 10 cm
• Outputs from each month 
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Simulation Chain

Source signal:
Analytical model of Askaryan pulse from 1018 eV 

hadronic shower
- Alvarez-Muniz & Zas - Phys.Lett.B 434 (1998)

Refractive Index:
Community Firn Model (CFM)
• Density profiles derived 

using glaciological 
modelling software:

• Community Firn Model → 
based on climate data from 
Summit

• Depth grid size: 10 cm
• Outputs from each month 

from 1980 to 2020

Radio Propagation Simulation
paraProp & MEEP

• Define source at x=0 within the ice (i.e. z = 500 m)
• Propagate Askaryan pulse through throughout 

geometry
• 1000 m radius x 1000 m depth
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Simulation Chain

Source signal:
Analytical model of Askaryan pulse from 1018 eV 

hadronic shower
- Alvarez-Muniz & Zas - Phys.Lett.B 434 (1998)

Refractive Index:
Community Firn Model (CFM)
• Density profiles derived 

using glaciological 
modelling software:

• Community Firn Model → 
based on climate data from 
Summit

• Depth grid size: 10 cm
• Outputs from each month 

from 1980 to 2020

Radio Propagation Simulation
paraProp & MEEP

• Define source at x=0 within the ice (i.e. z = 500 m)
• Propagate Askaryan pulse through throughout 

geometry
• 1000 m radius x 1000 m depth

Output
• Sample radio signal at a set of receivers (RX)
• Compare outputs for ref-index at different 

times 
• Is possible to add antenna & detector 

response functions + noise

Direct

Refracted
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paraProp Results (zTX = 500 m)

Paths of direct, reflected, and refracted signals from 500 m source to RX at 
100 m and 200 m (calculated with NuRadioMC)

|θV – θc | = 5
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paraProp Results (zTX = 500 m)

Paths of direct, reflected, and refracted signals from 500 m source to RX at 
100 m and 200 m (calculated with NuRadioMC)

|θV – θc | = 5
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paraProp Results (zTX = 500 m)

Only the reflected/refracted paths traverse through the shallow firn layer

• Amplitude modulation of the R-signal is an order of magnitude higher than for D-signals

• No significant variation of ΔtDR 

Refracted trace at zRX = 100 m 

•
Δ𝐸𝑚𝑎𝑥

𝐸𝑚𝑎𝑥

 < ~10−1

Direct signal trace at zRX = 100 m 

•
Δ𝐸𝑚𝑎𝑥

𝐸𝑚𝑎𝑥

<  ~10−3
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Variation of Fluence (2017 vs 2019)
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Variation of Fluence (2017 vs 2019)
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Variance in RF parameters

Electric field fluence ΦE  is proportional to the UHE-ν energy Eν

Time frame: 2015-2020, |θV – θc | = 5

paraProp:  

• Reflected: 
ΔΦ𝐸

𝑅

Φ𝐸
𝑅

>  ~0.1 (x > 600 m)  

• Direct: ~10−3 <
ΔΦ𝐸

𝐷

Φ𝐸
𝐷

 <  ~10−2 

Meep:  

• Reflected:
ΔΦ𝐸

𝑅

Φ𝐸
𝑅

>  ~0.1 (x > 700 m)

• Direct:~10−2 <
ΔΦ𝐸

𝐷

Φ𝐸
𝐷

 <  ~10−1(x > 800 m)

Preliminary finding: Under likely signal geometries, shallow firn fluctuations produce systematic uncertainty in the fluence 

of reflected and refracted signals 

→ Results in systematic error for neutrino energy and arrival direction reconstruction.
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• During the May 2024 RET-CR deployment, boreholes were made using a coring drill 
• Firn cores were extracted down to a depth of 13 m → used to measure the refractive index profile at the RET site in two ways:

1. Direct gravimetric measurement of core density ρ 
2. Open-ended coaxial probe in contact with firn  → measure the relative permittivity εr from the reflected radio energy 

(method described in backup slides!)

21
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Measurement procedure
1. Slide core through shaping-rig
2. Press firn core against coaxial 

probe
3. Measure dielectric properties 

using coaxial probe method
4. Cut core – adjustable length 

(usually 10 cm)
5. Measure & log the core segment 

weight
6. Repeat

Coaxial 
Probe

Scales

Shaping Rig

Measuring firn properties at Summit

Firn 
Segment

22
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Reconstructed permittivity (coax probe method): 𝒏 = √𝝐𝒓

Analysis ongoing!
• Averaged between 500 MHz and 800 MHz
• Large uncertainty due to frequency variation in the reconstruction 

(described in backup slides) → not yet explained
• High conductivity of the firn → frequency-dependent permittivity 

reconstruction
• Conductivity of test/calibration materials uncertain

• Correlation between density and permittivity with significant 
variations

Reconstructed Density: 
• Refractive index and density related empirically 𝒏 = 𝟏 + 𝟎. 𝟖𝟒𝟓 𝝆
• Firn density was broadly consistent with previous measurements 

made at Summit
• Hawley & Morris estimated the firn density using neutron 

scattering measurements in 2008 to 30 m depth
• Evidence of ice layers at z = 7.65, 10.4, & 12.5 m

Preliminary!

23
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Summary
Seasonal modulation of radio signals due to ice properties:

• The polar regions are warming rapidly: understanding firn evolution and its modulation of Askaryan and Radar-Echo signals 

will be important for UHE-ν searches

• Under likely signal geometries, shallow firn fluctuations produce systematic uncertainty in the fluence of R-signals, and 

possibly for neutrino energy reconstruction as well

In-situ measurements of ice properties

•  The density profile at the Summit site is broadly consistent with previous measurements – with evidence of recent melting 

events

• Correlation of reconstructed permittivity with density measurements 

• Caution about results: calibration likely incomplete, frequency dependence likely unphysical

Future work:

• Simulating larger geometries – 3 km (depth) x 3km (radius)

• Analysis of TX to RX radio propagation at RET site → further insight into ice properties

• Examine seasonal radio modulation at South Pole, Antarctica



Thanks for your attention!
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RET May 2024 Deployment Team
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Askaryan Signal
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RF Simulation Methods

MEEP - Finite Difference Time Domain (FDTD) method
• Solves Maxwell’s equations inside discrete cells
• Computationally expensive:

• Cell size Δx ≤ λ/10 i.e. 8 cm for f = 300 MHz in vacuum
• Time resolution is related to cell size: 

Δ𝑡 ≤
1

𝑐𝑚𝑒𝑑𝑖𝑢𝑚√(Δx2 + Δ𝑦2 + Δ𝑧2) 
• Simulations for f > 500 MHz are exceedingly expensive

paraProp - Parabolic Equation:
• Parabolic wave approximation of Maxwell’s equations in a 

cylindrically symmetric medium
• Amplitude and phase residual errors low (<0.01) relative to FDTD 

within the ‘paraxial angle’ (θ < 45 deg)
• Computationally efficient -> Tractable for volumes > 1 km and f > 1 

GHz

Challenge: Large domain size & need for high spatial resolution to accurately resolve high frequencies -> Cylindrically symmetric 
medium 1 km radius x 1km depth, frequency range 1 MHz < f < 1000 MHz

Continuous wave RF emission at f = 100 MHz from a shallow 
dipole antenna – simulated with MEEP and paraProp
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paraProp - Parabolic Equation:
• Parabolic wave approximation of Maxwell’s equations in a 

cylindrically symmetric medium
• Amplitude and phase residual errors low (<0.01) relative to FDTD 

within the ‘paraxial angle’ (θparaxial < 45 deg)
• Computationally efficient -> Tractable for volumes > 1 km and f > 1 

GHz

Challenge: Large domain size & need for high spatial resolution to accurately resolve high frequencies -> Cylindrically symmetric 
medium 1 km radius x 1km depth, frequency range 1 MHz < f < 1000 MHz

Continuous wave RF emission at f = 100 MHz from a shallow 
dipole antenna – simulated with MEEP and paraProp

TX
θparaxial = 45
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In-Situ Ice Property Measurements

Density Measurements:
• Gravimetric: measure the mass of a firn sample with a definite volume 
• Neutron Probe: measure the return scatter of neutrons from a radio-isotope

Dielectric Measurements
• Coaxial Probe Impedance Measurement

• Open-coaxial probe in contact with a dielectric material (including firn 
and ice)

• Measure the complex S11 (reflection) parameter (amplitude and 
phase)

• Approximation of of coaxial probe impedance using equivalence 
circuit:

𝑖 𝜔 𝐶𝑓 + 𝜖𝑟 𝜔 𝜒 + 𝐺 𝜖𝑟 𝜔
2.5

=
1

𝑍0

1 − 𝑆11

1 + 𝑆11

• Calibration using (3+) materials with known permittivity -> allows you 
to measure an unknown material

Teflon

Outer 
Conductor 
(brass)

Inner 
Conductor 
(brass)

N-connector

Material Under Test 
(MUT) 

𝜖𝑟

Cf

C0(𝜖𝑟)

G(𝜖𝑟)

Coax Probe

MUT



8/29/2024 A. Kyriacou - akyriacou@ku.edu 32

In-Situ Ice Property Measurements

Radio propagation measurements

Density Measurements:
• Gravimetric: measure the mass of a firn sample with a definite volume 
• Neutron Probe: measure the return scatter of neutrons from a radio-isotope

Dielectric Measurements
• Coaxial Probe Impedance Measurement

• Open-coaxial probe in contact with a dielectric material (including firn 
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• Measure the complex S11 (reflection) parameter (amplitude and 
phase)
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Example (right): Measurements of dielectric in 
the laboratory (KU)

S11 measured using miniVNA (PC controlled 
VNA)

Materials used for calibration:
• Air
• Teflon (PTFE)
• Polycarbonate

Materials used for testing:
• HDPE
• Acyrlic
• Polyproplyene

The real part of permittivity is most sensitive to 
the phase of S11

S11 Values

33
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Reconstruction of εr

34

Example (right): Measurements of dielectric in 
the laboratory (KU)

S11 measured using miniVNA (PC controlled 
VNA)

Materials used for calibration:
• Air
• Teflon (PTFE)
• Polycarbonate

Materials used for testing:
• HDPE
• Acyrlic
• Polyproplyene

The real part of permittivity is most sensitive to 
the phase of S11
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Measurements in the field:
• Performed over two days → miniVNA needed to be recalibrated 3 times
• Performed with a 5 m RF cable between miniVNA and coaxial head → instrument calibration was incomplete
• High degree of frequency dependence in reconstructed permittivity → likely not physical
• Further work needed

Calibration 0, z = 2.18 m Calibration 2, z = 9.45 m

Permittivity reconstruction

Preliminary! Preliminary!
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