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UHEN Detection in Ice

Polar ice sheets are ideal detection media for ultra-high energy neutrinos (UHE-v) E, > 10 PeV

* Transparent to radio waves in the MHz - GHz regime - attenuation length L, = O(1 km) at 100 MHz to 500 MHz
* Allows for large volumes of ice to be instrumented
* Antennas are also far cheaper than optical modules
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Transparent to radio waves in the MHz - GHz regime - attenuation length L, = O(1 km) at 100 MHz to 500 MHz
Allows for large volumes of ice to be instrumented
Antennas are also far cheaper than optical modules

Askaryan emission

* Build-up of excess negative charge in the
medium

* Coherentradio emission produced at the
Cherenkov angle 6. to the cascade
direction defined by the refractive index (6
= 56)

* Experiments searching for in-ice Askaryan:
RICE, ARA, RNO-G, ARIANNA, ANITA,
PUEO, IceCube-Gen2 Radio
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UHEN Detection in Ice

Polar ice sheets are ideal detection media for ultra-high energy neutrinos (UHE-v) E, > 10 PeV

* Transparent to radio waves in the MHz - GHz regime - attenuation length L, = O(1 km) at 100 MHz to 500 MHz
* Allows for large volumes of ice to be instrumented
* Antennas are also far cheaper than optical modules

A Cosmic-Ray Radar-Echo method:
RET-CR= . /  lonization trail persists briefly after UHE-v cascade —acts as a reflective object for in-ice
Air Shower /
4 radar.
* Method is currently being tested in the field using UHE cosmic rays: Radar Echo
Telescope for Cosmic Rays (RET-CR)
Surface

*  Verification of the method in nature will facilitate the development of a future RET-N

Detectors ~Z
" * See Dylan Frikken’s talk - HE Astro / Gravitational Waves Il (08/26)
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RET-CR & In-Ice Askaryan Detectors have antennas within orimmediately below the “firn layer’

‘Shallow Firn’

Firn: intermediate stage between fresh fallen yqng a,f‘;“;“,’;i,, —
snow and glacial ice 200 kg m -
« 100 - 150 m deep in Greenland and Firn:
A . settling and grain growth
ntactic ice caps 400 kg m?
* Assuming constant accumulation and .
in:
temperature: settling and grain growth
,D(Z) =p; + Ap e kz 550 kg m™ %
* Densification rate k changes due to :;:‘:""9‘, g
gm™

different dominant process
*  0<2z<1Zzg,-"‘Shallow Firn’
‘ ., Pore close-off ]
Zoso<Z<Zgy,—‘DeepFirn 830 kg m- ‘Glacial Ice’
*  Z>1Zgy,—‘Glaciallce’

120 * Alley Koci (1988)
—— Double Broken Exponential Fit

Glacier ice === sintering Zss
* Therefractive index was found empirically 900 kg m* — pmoo ]
to be linearly proportional to the firn sty oy
density [Kovacs et al. 1994]: Buizer.t & Helsen, Glaciers and Ice Sheets in Firn density profile at Site A, Greenland (1988) —
n=1+A(p[g/cm?]) the Climate System, Chapter 11 (Springer) Alley & Koci (1988) — Annals of Glaciology.
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Firn Variation and Evolution

This simple description of Firn is complicated by seasonal fluctuations in temperature:

 Temperature variation leads to fluctuations in firn density

* Episodic surface melting events & rainfall

These lead to the formation of refrozen ice layers & density fluctuations > Strongest in the shallow firn layer (z< 15 m at
Summit) Predicted Density from
Community Firn Model

Variation of Density

Monthly surface air temperature at Summit, Greenland
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Firn Variation and Evolution

This simple description of Firn is complicated by seasonal fluctuations in temperature:

 Temperature variation leads to fluctuations in firn density

* Episodic surface melting events & rainfall

These lead to the formation of refrozen ice layers & density fluctuations > Strongest in the shallow firn layer (z< 15 m at
Summit)

Predicted Density from Variation of Density
Communitv Firn Model
Monthly surface air temperature at Summit, Greenland 0.0 — 0.0
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This simple description of Firn is complicated by seasonal fluctuations in temperature:
 Temperature variation leads to fluctuations in firn density

Firn Variation and Evolution

* Episodic surface melting events & rainfall
These lead to the formation of refrozen ice layers & density fluctuations > Strongest in the shallow firn layer (z< 15 m at
Summit)

Monthly surface air temperature at Summit, Greenland
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[2010-2019]

Average Variation of Density

Shallow fir

A ppys ™~ 4

Deep firn (z > 15 m);

A ppys < 4 kg/m?

n(z<15m):

12 kg/m?3

5 10 15
Average Ap [kg/m?]
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Simulation Study: Summit, Greenland

Variable firn density over time may change the properties of neutrino-induced radio signals

To investigate this effect, we use the firn layer at Summit, Greenland as a case study.

Goal: Simulate radio propagation from a deep source to a set of receivers at depths 0 m <z <200
m, for a geometry of 1km depth x 1km radius (comparable to the attenuation length!)
-» Quantify variation in out E-field trace at RX - Egx(t) for n(z) profiles from different times

Analysis parameters:

Peak amplitude: Egy .., for direct (D) and reflected/refracted (R) signal
- Time delay between D and R signal: Atz =t; -ty

Fluence: ¢pE, = ec[ E2,(t)dt

Radio Simulation Codes (see backup slides for more details):
- MEEP: Direct solution of Maxwell’s equations in a geometric grid (FDTD method)
Most accurate method but computationally expensive (requires grid resolution Ax <
A/10) NUUK
paraProp: Parabolic-wave approximation of Maxwell’s equation within cylindrically symmetry
volume
- Accurate within ‘paraxial angle’ to the horizontal direction - computationally efficient

g )
}‘v Wl

i

g .&.-" Wl

KALAALLIT NUNAAT

Grenland
1:10 mio

]
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Simulation Study: Summit, Greenland

Variable firn density over time may change the properties of neutrino-induced radio signals

To investigate this effect, we use the firn layer at Summit, Greenland as a case study.

Goal: Simulate radio propagation from a deep source to a set of receivers at depths 0 m <z <200
m, for a geometry of 1km depth x 1km radius (comparable to the attenuation length!)
-» Quantify variation in out E-field trace at RX - Egx(t) for n(z) profiles from different times

Analysis parameters:
Peak amplitude: Egy .., for direct (D) and reflected/refracted (R) signal
Time delay between D and R signal:  Atpr=t; - {5
Fluence: ¢pE, = ec[ E2,(t)dt

Radio Simulation Codes (see backup slides for more details):
MEEP: Direct solution of Maxwell’s equations in a geometric grid (FDTD method)
Most accurate method but computationally expensive (requires grid resolution Ax <
A/10)
paraProp: Parabolic-wave approximation of Maxwell’s equation within cylindrically symmetry
volume

Accurate within ‘paraxial angle’ to the horizontal direction - computationally efficient
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Simulation Chain

Refractive Index:
Community Firn Model (CFM)  od _—

45 1.50
—— 2020 June

* Density profiles derived 25 — ;g;‘;j”"e ‘
using glaciological s0] ‘
modelling software: ET —

*  Community Firn Model =
based on climate data from
Summit 1s0]

* Depth grid size: 10 cm 175

* Outputs from each month %30 R e % 05
from 1980 to 2020

8/29/2024 A. Kyriacou - akyriacou@ku.edu
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Simulation Chain

RefraCtive Index: Refractive Index n(z)
Community Firn Model (CFM) ~ oi” 22 % !

45 1.50

—— 2020 June
* Density profiles derived 25 — 2isne
using glaciological 5o ‘
modelling software: T _
¢ Community Firn Model > g0
based on climate data from &2
Summit 150
* Depth grid size: 10 cm 175

* Outputs from each month Q35 035 040 045 050 055
Firn Density p(z) [g/cm?]
from 1980 to 2020

Source signal:
Analytical model of Askaryan pulse from 102 eV
hadronic shower
- Alvarez-Muniz & Zas - Phys.Lett.B 434 (1998)
E-field Trace E.(t) " E-field Spectrum dE.(f)/df
0.25 — By—6c=35
— 8
0.20 E
= )
E_ 0.15 £ s
S £
E o1 E
= - 4
< 0.05 3
ui <
0.00 _LUL'JV 2
=0.05
o
10 0 10 20 30 40 50 200 400 600 800 1000
Time t [ns] Frequency f[GHz]
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Simulation Chain

Refractive Index: Refractve inde i) Radio Propagation Simulation
c .t F. M d I (CFM) 0'[1].25 1.30 1.35 1.40 1.45 1“50
ommunity Firn Viode ' <. — 200w paraProp & MEEP
’ De'n5|ty pr‘oflle:s derived “ 2 Jor7 )| * Define source at x=0 within the ice (i.e. z=500 m)
usw:jg ﬁ!auolc])cglcal > * Propagate Askaryan pulse through throughout
modelling software: E = ‘
> SV E geometry
* Community Firn Model > g : ‘ * 1000 m radius x 1000 m depth
based on climate data from =% ‘ >
Summit 150
* Depth grid size: 10 cm 175
* Outputs from each month Q35 035 040 045 050 055
Firn Density p(z) [g/cm?] 0
from 1980 to 2020
Source signal: 200
Analytical model of Askaryan pulse from 102 eV
hadronic shower T 0
- Alvarez-Muniz & Zas - Phys.Lett.B 434 (1998) ™
E-field Trace E,(t) " E-field Spectrum dE.(f)/df % i
0.25 — By—6c=35 8 600
0.20 g 8
E 0.15 € s o TX
E, 0.10 E 800 . RX
Z o s 0 1 1 | direct
“ 000 S X refracted
: A~
008 10007 200 400 600 800 1000
[ I 0 ] ) i ] Range x [m]
) lTime t [ns] FrequencyﬁflGHz] l
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Simulation Chain

Community Firn Model (CFM)  od —

RefraCtive I ndex: Refractive Index n(z)

—— 2020 June
—— 2019 june
—— 2017 June

Density profiles derived 25
using glaciological s0]
modelling software: £
Community Firn Model &> £x0
based on climate data from ©
Summit 150
Depth grid size: 10 cm 175
Outputs from each month
from 1980 to 2020

%30 035 o040 o045 050 055
Firn Density p(z} [g/cm?]

1.50

Source signal:
Analytical model of Askaryan pulse from 102 eV

v

hadronic shower
- Alvarez-Muniz & Zas - Phys.Lett.B 434 (1998)
E-field Trace E;(t) E-field Spectrum dE(A/df
025 — 6y-6c=35

®

E(t) [mV/m]
dE.(f)/df [mV/m/GHz]

-0 0 10 20 30 40 50 200 400 600 800 1000
Time t [ns] Frequency f[GHz]
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Radio Propagation Simulation
paraProp & MEEP

* Define source at x=0 within the ice (i.e. z=500 m)
* Propagate Askaryan pulse through throughout

geometry

* 1000 m radius x 1000 m depth

0
“m
200
E 400
N
= '
S
)
A 600
o TX
800 «  RX
------ direct
refracted
1000
0 200 400 600 800 1000

Range x [m]
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Output
Sample radio signal at a set of receivers (RX)
Compare outputs for ref-index at different
times
Is possible to add antenna & detector
response functions + noise

Simulated Trace
s Zex= 500.0 m, X, = 800.0 m, 2z, = 100.0 m

2 Refracted
5
E
o 1
©
2
=
L e
o
=
24 . —— 2017 June
w Direct 2018 June
- —— 2019 June
0 50 100 150 200 250 300 350 400
Time [ns]
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paraProp Results (z-y = 500 m)

paraProp RX Trace Egx(t) Ztx = 500.0 m, X = 500 m, zx = 100 m

Paths of direct, reflected, and refracted signals from 500 m source to RX at o Direct e Reflected
100 m and 200 m (calculated with NuRadioMC) 15 —— 2017 June
|6,—6.]=5 ' 2018June | 7.5
\" cl ™ 50 —— 2019 June
_ i 5.0
£
0 £ 25 -
A TX g 0.0 VTV ’f
., A = I 0.0 F—rritomein AN iy
et . RX = -25
200 e u 2
e P e direct -5.0 _so]
_ | N reflected 7 751
e 400 - - gt ot IS (N direct 3750 3800 3850 4260 4280 4300 4320 4340 4360
— Time of Flight t [ns] Time of Flight t [ns]
N | N R reflected
e paraProp RX Trace Epx(t) Zix = 500.0 m, Xx = 500 m, Zx= 200 m
"5_ Direct teos Reflected
o 600! 0.00006 =t
()] 0.00004 2018 June 4
—— 2019 June
0.00002 \/\A/WWN F\
E 0.00000 2 ’
800 1 S \
£ -0.00002 A
: 0 ﬁ e e
X -0.00004
&
W —0.00006 R ,
1000+ ; ' ‘ ' - \
0 200 400 600 800 1000 ~0.00008 '
Range x [m] ~0.00010 —4
3440 3460 3480 3500 3540 3560 3580 3600

Time of Flight t [ns Time of Flight t [ns
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paraProp Results (z-y = 500 m)

QSS‘ZQV

RADAR ECHO TELESCOPE

eos Direct s Refracted
Paths of direct, reflected, and refracted signals from 500 m source to RX at 8 e T 8 eiracte
100 m and 200 m (calculated with NuRadioMC) 6 ;gigiune 6
|6y—06.] =5 4 4
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0o/ E 2 2
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>
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W
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paraProp Results (z-y = 500 m)

Only the reflected/refracted paths traverse through the shallow firn layer
. Amplitude modulation of the R-signal is an order of magnitude higher than for D-signals

*  Nosignificant variation of Aty

Direct signal trace at z,, = 100 m Refracted trace at zp, = 100 m
AE 4
° AEEmax < ~10—3 hd ?n;ax < ~10
max x
le-5 Pulse le—7 Spectrum le-5 Pulse le—7 Spectrum
—— 2017 June —— 2017 June
2 25+ 2018 June 21 204 2018 June
—— 2019 june ’ —— 2019 June

2.04

154

1.0

0.5 1

E field amplitude [mV]
E field amplitude [mV]

-2 0.0 1

5280 5285 5290 5295 5300 5305 5310 5315 5320 0.0 01 0.2 0.3 0.4 0.5 3350 5360 3370 3360 390 3600 0o o1 03 04 03

0.‘2 . .
Time of Flight [ns] Frequency [GHz] Time of Flight [ns] Frequency [GHz]
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Variation of Fluence (2017 vs 2019) 7
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Fluence variation A¢E/¢E (2017 - 2019), Source depth: z, = 500.0
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Variation of Fluence (2017 vs 2019) 7
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Fluence variation A¢E/¢E (2017 - 2019), Source depth: z, = 500.0

&
N
c
]
o
Q
o
| -
Q
=
Q
&)
Q
o'

400 500 600 700 800 900
Receiver Range Xgx [M]

8/29/2024 A. Kyriacou - akyriacou@ku.edu 19



\&ﬁ///

RADAR ECHO TELESCOPE

Variance in RF parameters

Electric field fluence @f is proportional to the UHE-v energy E, Fluence Residuals A®f/®F paraProp & MEEP
Time frame: 2015-2020, |6, -6, | =5 Zix=100.0m
1001 W paraProp R
paraProp: % paraProp D :{
X MEEPR I
E
* Reflected: MZ 2> ~0.1(x>600m) » $ MEEPD I i I
@F, 1071 E 1 I
S —3 _ AP’ -2 e +
e Direct: ~107° < —2 < ~10 Y -
D <
P u,"'e,m 10—2, A f
Meep: J f i __f—— I I
° . R ~ k 4 b
Reflected: = > ~0.1 (x> 700 m) o H 1 1
. -2 ACDED -1 T B
* Direct:~107* < —2 < ~10"*(x>800m) 1
oF ) 1
10741 ‘ ‘ : ‘ ‘ ‘
400 500 600 700 800 900 1000
Range x [m]

Preliminary finding: Under likely signal geometries, shallow firn fluctuations produce systematic uncertainty in the fluence
of reflected and refracted signals

- Results in systematic error for neutrino energy and arrival direction reconstruction.

8/29/2024 A. Kyriacou - akyriacou@ku.edu
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Measuring firn properties at Summit

During the May 2024 RET-CR deployment, boreholes were made using a coring drill

Firn cores were extracted down to a depth of 13 m - used to measure the refractive index profile at the RET site in two ways:
1. Direct gravimetric measurement of core density p

2. Open-ended coaxial probe in contact with firn > measure the relative permittivity €, from the reflected radio energy
(method described in backup slides!)

RET-CR Site Map, GNSS Survey 15th & 19th May, 2024 [
TX at (lat=72.605928 N, lon=-38.35038826 E), alt = 3264.844 m (a.s.|)

SS5_scint2 1 30 m from TX
BGHE— ‘
*SS5_scintl

SS1_scint2

S5 T —-RX0 552_scintl

SS1_scintl N
/

/ RefAntenna \\

/

: CalBorehole .TX,DAO |

\ |

\Rx3 /
\ RX1

N /

P )

S552_scint2

Y (North) [m]

RX2 S :
SS3_scint2
w0 *SS3 "sS3_scintl

S56_scintl
,S56
S56_scint2

‘ X (Ea;t) [m]
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Measuring firn properties at Summit

Measurement procedure |
1. Slide core through shaping-rig
2. Pressfirn core against coaxial

probe b \ :

3. Measure dielectric properties Shaping Rig
using coaxial probe method
4. Cutcore - adjustable length
(usually 10 cm) Coaxial
5. Measure & log the core segment 2 Probe
weight o~
6. Repeat i
Segment
-
Scales ZUNEEN © | "N

8/29/2024 A. Kyriacou - akyriacou@ku.edu




Results: Permittivity & Density

Reconstructed Density:

Reconstructed permittivity (coax probe method): n = \/er

Refractive index and density related empirically n =1+ 0.845 p
Firn density was broadly consistent with previous measurements

made at Summit

* Hawley & Morris estimated the firn density using neutron
scattering measurements in 2008 to 30 m depth
Evidence of ice layersatz=7.65,10.4, &12.5m

Analysis ongoing!

Averaged between 500 MHz and 800 MHz

Large uncertainty due to frequency variation in the reconstruction

0 ;(ET—Site: Firn Core Density Profile (16th & 17th May, 2024)

’?ﬂ// /)

RADAR ECHO TELESCOPE

(described in backup slides) > not yet explained

* High conductivity of the firn > frequency-dependent permittivity

reconstruction

* Conductivity of test/calibration materials uncertain

Correlation between density and permittivity with significant

variations

8/29/2024

+ RET core density (2024)
Hawley & Morris neutron probe (2008) +
5 /|8
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> g
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Seasonal modulation of radio signals due to ice properties:

* The polar regions are warming rapidly: understanding firn evolution and its modulation of Askaryan and Radar-Echo signals
will be important for UHE-v searches

* Under likely signal geometries, shallow firn fluctuations produce systematic uncertainty in the fluence of R-signals, and
possibly for neutrino energy reconstruction as well

In-situ measurements of ice properties

*  The density profile at the Summit site is broadly consistent with previous measurements — with evidence of recent melting
events

* Correlation of reconstructed permittivity with density measurements
* Caution about results: calibration likely incomplete, frequency dependence likely unphysical
Future work:
* Simulating larger geometries — 3 km (depth) x 3km (radius)
* Analysis of TX to RX radio propagation at RET site > further insight into ice properties

* Examine seasonal radio modulation at South Pole, Antarctica

8/29/2024 A. Kyriacou - akyriacou@ku.edu
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UHEN Detection in Ice S
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Askaryan
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RF Simulation Methods

Challenge: Large domain size & need for high spatial resolution to accurately resolve high frequencies -> Cylindrically symmetric
medium 1 km radius x 1km depth, frequency range 1 MHz < f < 1000 MHz

MEEP - Finite Difference Time Domain (FDTD) method Meep Absolite Field zoomed in, 100 Mtz
- Solves Maxwell’s equations inside discrete cells 20
- Computationally expensive:

« Cell size Ax <A/10i.e. 8 cm for f = 300 MHz in vacuum

- Time resolution is related to cell size:

1
At S 20

CmediumV (AX? + Ay? + Az2)
- Simulations for f > 500 MHz are exceedingly expensive

ParaProp Absolute Field, 100 MHz

20

z(m)
z (m)

40

paraProp - Parabolic Equation:

- Parabolic wave approximation of Maxwell’s equations in a &0 %
cylindrically symmetric medium

- Amplitude and phase residual errors low (<0.01) relative to FDTD © © o we o oo e e oo
within the ‘paraxial angle’ (8 < 45 deg) Continuous wave RF emission at f = 100 MHz from a shallow

- Computationally efficient -> Tractable for volumes >1 kmand f > 1 dipole antenna - simulated with MEEP and paraProp
GHz
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RF Simulation Methods

Challenge: Large domain size & need for high spatial resolution to accurately resolve high frequencies -> Cylindrically symmetric
medium 1 km radius x 1km depth, frequency range 1 MHz < f < 1000 MHz

MEEP - Finite Difference Time Domain (FDTD) method Meep Absolite Field zoomed in, 100 Mtz
- Solves Maxwell’s equations inside discrete cells
- Computationally expensive:

« Cell size Ax <A/10i.e. 8 cm for f = 300 MHz in vacuum

- Time resolution is related to cell size:
1

CmediumV (AX? + Ay? + Az2)
- Simulations for f > 500 MHz are exceedingly expensive

ParaProp Absolute Field, 100 MHz

20

At <

z (m)

40

paraProp - Parabolic Equation:

- Parabolic wave approximation of Maxwell’s equations in a
cylindrically symmetric medium

- Amplitude and phase residual errors low (<0.01) relative to FDTD
within the ‘paraxial angle’ (eparaxial <45 deg) Continuous wave RF emission at f = 100 MHz from a shallow

- Computationally efficient -> Tractable for volumes >1 kmand f > 1 dipole antenna - simulated with MEEP and paraProp
GHz
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RADAR ECHO TELESCOPE

In-Situ Ice Property Measurements

Density Measurements: /N—connector

* Gravimetric: measure the mass of a firn sample with a definite volume Teflon

* Neutron Probe: measure the return scatter of neutrons from a radio-isotope | - Inner
uter

]
Conductor N goondu)ctor
Dielectric Measurements (brass) \ rass

 Coaxial Probe Impedance Measurement
 Open-coaxial probe in contact with a dielectric material (including firn

andice)
« Measure the complex S, (reflection) parameter (amplitude and Mate”"’('ll\,IUU”T‘;erTeSt
phase)
* Approximation of of coaxial probe impedance using equivalence
circuit:
2.5 11 -5 Coax Probe
[ w(Cr+ €. (w + G (6. (w = ——
(G + er(@i) +6 (@) = 7175 c,
« Calibration using (3+) materials with known permittivity -> allows you |- == ===
to measure an unknown material I I
I CO(Er) I
| I MUT
I I
— l
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RADAR ECHO TELESCOPE

In-Situ Ice Property Measurements

Radio propagation measurements

Density Measurements:
* Gravimetric: measure the mass of a firn sample with a definite volume
* Neutron Probe: measure the return scatter of neutrons from a radio-isotope

Dielectric Measurements
 Coaxial Probe Impedance Measurement
* Open-coaxial probe in contact with a dielectric material (including firn

andice)

* Measure the complex S, (reflection) parameter (amplitude and
phase)

« Approximation of of coaxial probe impedance using equivalence Coax Probe
circuit: Cs

i (Cr + € (0)7) + G (e(@)) ™ = Zy 1+ Sp

* Calibration using (3+) materials with known permittivity -> allows you
to measure an unknown material

l
l
I mur
l
|
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RADAR ECHO TELESCOPE

In-Situ Ice Property Measurements

S,, Values

Example (right): Measurements of dielectric in
Magnitude |S11]

the laboratory (KU) —a

1'0’\/ _ ::I;cnamonate
S,, measured using miniVNA (PC controlled 08 | \
VNA) — o5

n

Materials used for calibration: B
. Air
* Teflon (PTFE) L - — — - — 4
* Polycarbonate Phase ¢(S11)

150 N |
Materials used for testing: 100
* HDPE 5 W
* Acyrlic =
* Polyproplyene g
The real part of permittivity is most sensitive to 150
the phase of S, 200 %0 %0 00 1600 1200 1400

Frequency f [MHz]
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RADAR ECHO TELESCOPE

In-Situ Ice Property Measurements

Example (right): Measurements of dielectric in Reconstruction of €,
the laboratory (KU) . Measurements at KU —
—-- HDPE literature
Polypropylene
S,; measured using miniVNA (PC controlled = Plyropyiene e
VNA) === Acrylic literature

Materials used for calibration:
* Air

* Teflon (PTFE)

* Polycarbonate

Materials used for testing: 201
* HDPE

* Acyrlic

* Polyproplyene 151

The real part of permittivity is most sensitive to
the phase of S,

1.0 T T T T T
200 400 600 800 1000 1200 1400

Frequency f [MHz]
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Permittivity reconstruction

Measurements in the field:

* Performed over two days 2> miniVNA needed to be recalibrated 3 times

* Performed with a 5 m RF cable between miniVNA and coaxial head - instrument calibration was incomplete
* High degree of frequency dependence in reconstructed permittivity 2 likely not physical

* Further work needed

Calibration0,z=2.18 m Calibration2,z=9.45m

e CallD0,z=2.18m &CallD2,z=945m

3.50

350
- HDPE
— UHMW i — UHMW
1o — 325 e
3.00 — fim 3.00 4 : . ' —
Prelimi | Preliminary!
s 2] reiminary. 5 275
é-\ ;
£ 2501 £ 250
£ E
= 2259 & 25 N e
f
2.00 2.00
175 175 | /-
150 ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 : Y 02 0.4 0.6 08 10
Frequency f [Hz] 1et Frequency f [Hz] 1e9
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