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Outline

e What are particle showers?
e More realistic particle shower simulations
e Future studies using differences between EM and Hadronic showers
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Particle showers in IceCube

Electromagnetic (in nuE CC interactions)

e Only photons, electrons, and positrons
e Simpler physics (EM)

v
d(u)
u(d)
Hadronic (all interactions)
N
e Initiated by hadrons, but involves other
particles (including electromagnetic)
as well
e Much more complex to model
5
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Particle showers in IceCube - Cherenkov Emission

e Charged particles traveling faster than speed of light in a

medium (c/n) emit cherenkov light J4%E 7’ c?
o [l—m]

dhw.dx hc

e In particle showers (v & ¢):
Cherenkov light o« # of charged particles o # of particles

e Gamma distribution is a good approximation for # of particles
in EM showers dE (bt)a_l e_bt

dt Eob I'(a)
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IceCube shower simulations 0 e

* Neutrino interaction is simulated but hadronization is not
“Hadrons’

o Final state hadrons are replaced by generic “Hadrons” particle

« Shower to shower fluctuations in shape is ignored N

- Lateral development never explored

FLUKA simulations ﬁQL{,

 FLUKA is a tool for calculations of particle transport and their interactions
with matter

* (Can be linked with DPMJET (3.19) for high energy hadronic interactions

« Able to simulate neutrino interactions, including charm production (for CC
only)
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More realistic shower simulations for IceCube
Shower profiles - EM & Hadronic

100 TeV Electron Showers

= gverage profile

100 TeV Pion- Showers

= gverage profile
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First glance observations

e Average shower is not a perfect fit L
e Hadronic showers fluctuate more than EM showers Next: Peak distribution

Emre Yildizci



Shower Profiles - Peak position distribution

Hadronic vs EM showers
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Shower Profiles - Peak position distribution

Hadronic vs EM showers
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Shower Profiles - Peak position distribution

Hadronic vs EM showers e Peak position cannot be well
12 — DefaulticeCube values described by a single value from
B Proton ]
I Electron average fit
T 10;
é g4 e Hadronic showers have wider
2 distribution
o 6 -
V4
0
= e Next: Try gamma fits to individual
showers
2 o
1 10 100 a—1 _pt
Energy (TeV) dE (bt) E
— = Eyb
dt [ (a)
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Shower Profiles - Peak position error
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Shower Profiles - Peak position (Average fit vs Individual fits)

Peak position error (m)

Average fit

Individual fits

Average fit
Individual fits
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Shower Profiles - Peak position (Average fit vs Individual fits)

Peak position error (m)

Average fit

Individual fits

Average fit
Individual fits
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Significant improvement

Hadronic showers still
have wider distribution

Individual fits perform
better at higher energies
for both EM and hadronic

Next: parameter
distribution
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EM Showers - Parametrization dE (bt)* ' et
=4 — E()b
dt [ (a)

e ad&b strongly correlated
e No correlation with total energy
e |ceCube values (extrapolated) are a little off for high energies

1 TeV Electron 100 TeV Electron 10 TeV Electron
_
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Hadronic Showers - Parametrization df _ Eob(bt)a—l bt

a&b strongly correlated dt I (a)
Small correlation with total energy

IceCube values (extrapolated) are a little off for high energies

Variations in a&b are larger than EM showers

1 TeV Proton 100 TeV Proton 10 TeV Proton
'
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Next

e Get the a&b distribution at many energy levels and fit splines
e |tis a significant improvement to get the fluctuations in shower shape over

using an average profile
o We also investigated some subtle features that couldn’t be captured by parametrization

Emre Yildizci
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Future studies using differences between EM & Hadronic

EM
v e ” I“ |
Ve CC d(u)

u(d) Hadronic

v 17

v NC i

u(d) Hadronic
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nukE CC: EM + Hadronic
All NC: Hadronic
nuTau CC: Hadronic + (Tau decay)

Shower properties to be explored

o Shower extension
o Lateral shower development
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Shower extension

e Signals from extended showers could be separated from localized showers
e \We use the last 3% energy deposition position as proxy for shower extension

10 TeV neutrino showers
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e NC showers and nuTau CC showers have larger extensions
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2D shower profile

e Most of the emitted
Cherenkov photons are
very close to the shower
axis

e But, information could be
obtained from the off-axis
photons
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2D shower profile

e Most of the emitted

20.0

Cherenkov photons are .
very close to the shower

axis 20

e But, information could be £ 83

obtained from the off-axis £ w0

photons 8 s
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2D shower profile

e Most of the emitted
Cherenkov photons are
very close to the shower
axis

e But, information could be
obtained from the off-axis
photons
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2D shower profile

an’
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e EM showers are more localized than hadronic showers
e Muons and other particles in hadronic showers
e How does it translate into the NC showers and nuE CC showers? .
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2D shower profile

e NC showers have more off-axis . o How frequent are these off-axis
photons than CC showers | photons?
Cherenkov light from 10TeV showers
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Summary

e \We are working on a more detailed parametrization of EM and hadronic
showers that could introduce fluctuations in shape

e \We are studying the possibility of using differences of EM and hadronic
showers to distinguish nuE CC events, all flavor NC events and nuTau CC
events

Thanks!

Emre Yildizci
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Backup
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Shower Profiles - Profile shape

e RMS deviation as a proxy
for how well the fits
describe the shape

e EM showers have smaller
deviations from the
gamma fits

e Individual fits perform
better at higher energies
for both EM and hadronic
showers
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Shower Profiles - Missing energy

e Fraction of hadronic
showers are “invisible”
(recoil, neutrinos etc.)

e Total cherenkov yield from
EM showers also not
constant (~1% effect)

e Missing energy fraction

decreases at higher
energies
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Shower extension

e NC showers deposit the E CC
last 3% of the energy far 18 EE NC
later than CC showers on
average

97% quartile range (m)
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2D shower profile

e NC showers have more
off-axis photons than CC
showers
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1D Shower Profiles - Root Mean Square Error

e RMS error as a proxy for
how well the fits describe
the shape

e (CC events have smaller
deviations from the
gamma fits compared to
NC events

e FErrors are smaller at
higher energies
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Technical details

Simulated

e 1 TeV nuk CC

e 1 TeV nuEBar CC

e 5TeV nukE NC
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Potential method - 1D shower profile

Peak positions
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Particle showers in IceCube - Current state

e Neutrino interaction is simulated

but hadronization is not
e Final state hadrons replaced by
generic “hadrons” particle (nugen)

e Shower to shower fluctuations in
shape are ignored

e Parametrization is old
e Pre-LHC models
e Energy upto 10 TeV
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“Hadrons”
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Inelasticity distribution
)
E .
Theoretical calculation E
hd -
cross section as a ?
. . . . . | | | . | | | |
funCt|On Of InelaStICIty 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Inelasticity Inelasticity ~ Gary Binder

[] VelTeV

0.35 - [ velTeV
‘ [ ve 10 TeV

Probability distribution of
inelasticity from Fluka

Number of showers (a.u.)

o
=
o

arbitrary y-axis scaling %1

for easier comparison &6 , , , , 38
0.0 0.2 0.4 0.6 0.8 1.0
Inelasticity




Cherenkov light yield ratio

How frequent are “interesting” neutrino showers?

e Fit a gamma function to shower profiles and use RMS error as a proxy for
how “anomalous” the profile is

Low RMSE High RMSE
1 TeV nuECCshowers 1 TeV nuECCshowers
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How frequent are “interesting” neutrino showers?

e Complementary CDF distribution of RMSE, Pr(RMSE>rmse), for different
inelasticity values

109 4 —_— 0<y<02
— 02<y<04
—_— 04<y<06
- 06<y<08
—_—08<y<l
-= all

10—1 4

High RMSE -> More deviation
from gamma function

102 A

Complementary CDF (Pr[RMSE>rmse])

1073 4

T T T — T
0.0000 0.0005 0.0010 0.0015 0.0020
mse

High inelasticity -> More hadronic energy -> More “interesting” showers
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Inelasticity (y) = Hadronic / (Hadronic + EM) for nuECC
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