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Fitting for unresolved point sources

4

Diffuse i.e. Poissonian data: D ∼ Pois(∑ Si Φi(x))
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Diffuse i.e. Poissonian data: D ∼ Pois(∑ Si Φi(x))
 + bremsstrahlungπ0 inverse Compton scattering

…

Yitian Sun | Overconfidence in Non-Poissonian Template Fitting



Fitting for unresolved point sources

5

a double/compound poisson process.

Diffuse i.e. Poissonian data: D ∼ Pois(∑ Si Φi(x))
D ∼ Pois(∑ Si Φi(x) + ΦPS(x)) ΔΦPS(x) ∼ Pois(Sj Tj(x))+ unresolved point sources: with

Yitian Sun | Overconfidence in Non-Poissonian Template Fitting



Fitting for unresolved point sources

5

a double/compound poisson process.

Diffuse i.e. Poissonian data: D ∼ Pois(∑ Si Φi(x))
D ∼ Pois(∑ Si Φi(x) + ΦPS(x)) ΔΦPS(x) ∼ Pois(Sj Tj(x))+ unresolved point sources: with

To understanding the 
difference in likelihood:

Yitian Sun | Overconfidence in Non-Poissonian Template Fitting



Fitting for unresolved point sources

5

a double/compound poisson process.

Diffuse i.e. Poissonian data: D ∼ Pois(∑ Si Φi(x))
D ∼ Pois(∑ Si Φi(x) + ΦPS(x)) ΔΦPS(x) ∼ Pois(Sj Tj(x))+ unresolved point sources: with

To understanding the 
difference in likelihood:

Yitian Sun | Overconfidence in Non-Poissonian Template Fitting



Fitting for unresolved point sources

5

a double/compound poisson process.

Diffuse i.e. Poissonian data: D ∼ Pois(∑ Si Φi(x))
D ∼ Pois(∑ Si Φi(x) + ΦPS(x)) ΔΦPS(x) ∼ Pois(Sj Tj(x))+ unresolved point sources: with

To understanding the 
difference in likelihood:

Yitian Sun | Overconfidence in Non-Poissonian Template Fitting



Fitting for unresolved point sources

5

a double/compound poisson process.

Diffuse i.e. Poissonian data: D ∼ Pois(∑ Si Φi(x))
D ∼ Pois(∑ Si Φi(x) + ΦPS(x)) ΔΦPS(x) ∼ Pois(Sj Tj(x))+ unresolved point sources: with

To understanding the 
difference in likelihood:

Yitian Sun | Overconfidence in Non-Poissonian Template Fitting



Fitting for unresolved point sources

6

a double/compound poisson process.

Diffuse i.e. Poissonian data: D ∼ Pois(∑ Si Φi(x))
D ∼ Pois(∑ Si Φi(x) + ΦPS(x)) ΔΦPS(x) ∼ Pois(Sj Tj(x))+ unresolved point sources: with

Non-Poissonian Template Fitting is a likelihood (-based fitting method) that include unresolved point sources.

It achieves this by (implicitly) accounting for all the ways in which an observed count in a pixel is made up.
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Non-Poissonian Template Fitting is a likelihood (-based fitting method) that include unresolved point sources.

It achieves this by (implicitly) accounting for all the ways in which an observed count in a pixel is made up.

diffuse #1

point source

#2

marginalized over all the 
ways this photon count 
can be obtained, e.g. the 
source count distribution:
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Non-Poissonian Template Fitting with PSF
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Diffuse i.e. Poissonian data: D ∼ Pois(∑ Si Φi(x))
D ∼ Pois(∑ Si Φi(x) + ΦPS(x))+ unresolved point sources:
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How reliable are the posteriors produced from this likelihood?
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An overconfident fit under the coverage test
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For this talk, I will focus on one of sources of NPTF’s overconfidence: un-modeled inter-pixel correlations.
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A toy example: a single uniform population of PS
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We fit for overall normalization, against simulated data, to test coverage.
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Un-modeled positive correlation -> overconfidence!
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A toy example: single PS population
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σ = 0.8∘

coverage
PSF

With a single template, fitted normalization ~ total count.
Total count likelihood given by NPTF is overconfident!

1-pixel (marginal) likelihood 2-pixel joint likelihood

In this toy example, 2-pixel 
correlation can be recaptured 
with an Gaussian approximation 
to the image likelihood, yielding a 
fairly well-calibrated fit.

We fit for overall normalization, against simulated data, to test coverage.
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A toy example: single PS population
σ = 0.8∘ σ = 0.6∘ σ = 0.4∘ σ = 0.2∘ σ = 0.0∘
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PSF

In this toy example, 2-pixel 
correlation can be recaptured 
with an Gaussian approximation 
to the image likelihood, yielding a 
fairly well-calibrated fit.

share the same total count likelihood profile
but NPTF with different PSF gives different results

(gives correct result for no PSF case)

Aside:

We fit for overall normalization, against simulated data, to test coverage.
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σ = 0.8∘ σ = 0.6∘ σ = 0.4∘ σ = 0.2∘ σ = 0.0∘

coverage
PSF

In this toy example, 2-pixel 
correlation can be recaptured 
with an Gaussian approximation 
to the image likelihood, yielding a 
fairly well-calibrated fit.

share the same total count likelihood profile
but NPTF with different PSF gives different results

(gives correct result for no PSF case)

Aside:

Modeling multi-pixel 
correlation in the 
likelihood is 
inherently hard.

We fit for overall normalization, against simulated data, to test coverage.
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to the image likelihood, yielding a 
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correlation in the 
likelihood is 
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We fit for overall normalization, against simulated data, to test coverage.
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In this toy example, 2-pixel 
correlation can be recaptured 
with an Gaussian approximation 
to the image likelihood, yielding a 
fairly well-calibrated fit.

share the same total count likelihood profile
but NPTF with different PSF gives different results

(gives correct result for no PSF case)

Aside:

Modeling multi-pixel 
correlation in the 
likelihood is 
inherently hard.

We fit for overall normalization, against simulated data, to test coverage.
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Simulation-Based Inference as a solution

12
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≈ p(θ |D)
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With energy binning: even more complicated correlations.

≈ p(θ |D)
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Summary

13

- Non-Poissonian Template Fitting may be overconfident in fits of the Galactic Center.

- Un-modeled positive correlations between pixels causes the likelihood for point source 

template normalization to be overconfident.

- Preliminarily, this effect accounts for a significant portion of the observed overconfidence 

in our tests. More careful study upcoming.

- Simulation-Based Inference may be a solution to this issue.
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Thank you!

- Non-Poissonian Template Fitting may be overconfident in fits of the Galactic Center.

- Un-modeled positive correlations between pixels causes the likelihood for point source 

template normalization to be overconfident.

- Preliminarily, this effect accounts for a significant portion of the observed overconfidence 

in our tests. More careful study upcoming.

- Simulation-Based Inference may be a solution to this issue.
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Backup slides
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NPTF fitting de-correlated data in toy example
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