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A long time ago Iin the galactic center far,
far away...
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Fitting for unresolved point sources

Diffuse i.e. Poissonian data: D ~ POiS( Z S; (D,-(X)>
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Fitting for unresolved point sources

7 + bremsstrahlung inverse Compton scattering

Diffuse i.e. Poissonian data: D ~ POiS( \Y q’,-(x))
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Fitting for unresolved point sources

Diffuse i.e. Poissonian data: D ~ POiS( Z S; (D,-(X)>

+ unresolved point sources: D ~ Pois( Z S, D.(x) + CDPS(x)> with A®pg(x) ~ Pois(Sj 7}(x)>

a double/compound poisson process.

To understanding the Diffuse: Unresolved point sources:
difference in likelihood:

AR N AN

(unknown location)
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Fitting for unresolved point sources

Diffuse i.e. Poissonian data: D ~ POiS( Z S; (D,-(X)>

+ unresolved point sources: D ~ Pois( Z S, D.(x) + CDPS(x)> with A®pg(x) ~ Pois(Sj 7}(x)>

a double/compound poisson process.
Non-Poissonian Template Fitting is a likelihood (-based fitting method) that include unresolved point sources.

It achieves this by (implicitly) accounting for all the ways in which an observed count in a pixel is made up.
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Fitting for unresolved point sources

Diffuse i.e. Poissonian data: D ~ POiS( Z S; (D,-(X)>
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Fitting for unresolved point sources

Diffuse i.e. Poissonian data: D ~ POiS( Z S; (D,-(X)>

+ unresolved point sources: D ~ Pois( Z S, D.(x) + CDPS(x)> with A®pg(x) ~ Pois(Sj 7}(x)>
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Fitting for unresolved point sources

Diffuse i.e. Poissonian data: D ~ POiS( Z S; (D,-(X)>

+ unresolved point sources: D ~ Pois( Z S, D.(x) + CDPS(x)> with A®pg(x) ~ Pois(Sj 7}(x)>

a double/compound poisson process.

Non-Poissonian Template Fitting is a likelihood (-based fitting method) that include unresolved point sources.

It achieves this by (implicitly) accounting for all the ways in which an observed count in a pixel is made up.

3] = 1+1+1 = 1+2 = .. A

marginalized over all the —
__» Wways this photon count
diffuse #1 #2 diffuse  #1 can be obtained, e.qg. the
point source point source ~ Source count distribution: )

# of photons / source
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Non-Poissonian Template Fitting with PSF

Diffuse i.e. Poissonian data: D ~ POiS( Z S; (D,-(X)>

+ unresolved point sources: D ~ Pois( Z S, D.(x) + CDPS(x)>
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Non-Poissonian Template Fitting with PSF

Diffuse i.e. Poissonian data: D ~ POiS( Z S; (D,-(X)>

+ unresolved point sources: D ~ Pois( Z S, D.(x) + CDPS(x)>

Likelihood from different pixels are
still iIndependent.
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Non-Poissonian Template Fitting with PSF

with point spread function (PSF)

Diffuse i.e. Poissonian data: D ~ POiS( Z S; (D,-(X)>

+ unresolved point sources: D ~ Pois( Z S, D.(x) + CDPS(x)>

Likelihood from different pixels are
still iIndependent.
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Non-Poissonian Template Fitting with PSF

with point spread function (PSF)
Diffuse i.e. Poissonian data: D ~ POiS( Z S, (D,-(X)> D ~ POiS<PSF Z 5; D;(x) )

+ unresolved point sources: D ~ Pois< Z S, D.(x) + CI)PS(x)>

Likelihood from different pixels are
still iIndependent.
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Non-Poissonian Template Fitting with PSF

with point spread function (PSF)
Diffuse i.e. Poissonian data: D ~ Pois( Z S; CIDi(x)> D ~ Pois( Z S; Cﬁ-(x))

+ unresolved point sources: D ~ Pois( Z S, D.(x) + CI)PS(x)>

Likelihood from different pixels are
still iIndependent.
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Non-Poissonian Template Fitting with PSF

with point spread function (PSF)
Diffuse i.e. Poissonian data: D ~ Pois( Z S; CIDi(x)> D ~ Pois( 2 S; Cﬁ(x))

+ unresolved point sources: D ~ POiS< Z S; D(x) + (Dps(x)> D ~ POiS( 2 S; ®,(x) + PSF|®pg(x)| )

Likelihood from different pixels are
still iIndependent.
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Non-Poissonian Template Fitting with PSF

Diffuse i.e. Poissonian data:

+ unresolved point sources:

with point spread function (PSF)

D ~ Pois( Ys CIDi(x)> D ~ P()is< Y, @i(x)>

D ~ Pois( Y §,®,0) + Ppg(x) ) D~ Pois( ) 5,D,(0)+ PSF[ Dy )

Likelihood from different pixels are - 5 PSF)
o ermi’s point spread function
still independent. No longer true example at 2 GeV in HealPix (NSIDE=128)

in the presence of PSF.

RA

DEC
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Non-Poissonian Template Fitting with PSF

with point spread function (PSF)
Diffuse i.e. Poissonian data: D ~ Pois( Z S; CIDi(x)> D ~ P()is< 2 S; @i(x)>

+ unresolved point sources: D ~ POiS< Z S; D(x) + (Dps(x)) D ~ POiS( 2 S; ®,(x) + PSF|®pg(x)| )

Likelihood from different pixels are - 5 PSF)
o ermi’s point spread function
still independent. No longer true example at 2 GeV in HealPix (NSIDE=128)

in the presence of PSF.

RA

NPTF approximately accounts for the PSF effect by
correctly* computing the 1-pixel (marginal) likelihood...

DEC

...but still treating the total likelihood as a product of that for each pixel.
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Non-Poissonian Template Fitting with PSF

with point spread function (PSF)
Diffuse i.e. Poissonian data: D ~ Pois( Z S; CIDi(x)> D ~ P()is< 2 S; @i(x)>

+ unresolved point sources: D ~ POiS< Z S; D(x) + (Dps(x)> D ~ POiS( 2 S; ®,(x) + PSF|®pg(x)| )

Likelihood from different pixels are
Fermi’s point spread function (PSF)

still independent. No longer true example at 2 GeV in HealPix (NSIDE=128)
in the presence of PSK.

NPTF approximately accounts for the PSF effect by

correctly® computing the 1-pixel (marginal) likelihood... o

3] = 14141 .. .

\ Can be 10% of a 10-count source
...but still treating the total likelihood as a product of that for each pixel.

DEC
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Non-Poissonian Template Fitting with PSF

with point spread function (PSF)
Diffuse i.e. Poissonian data: D ~ Pois( Z S; CIDi(x)> D ~ P()is< Z S; @i(x)>

+ unresolved point sources: D ~ POiS< Z S; D(x) + (Dps(x)) D ~ POiS( 2 S; ®,(x) + PSF|®pg(x)| )

Likelihood from different pixels are
Fermi’s point spread function (PSF)

still independent. No longer true example at 2 GeV in HealPix (NSIDE=128)
in the presence of PSK.

NPTF approximately accounts for the PSF effect by

correctly® computing the 1-pixel (marginal) likelihood... 0

3] = 14141 .. .

\ Can be 10% of a 10-count source
...but still treating the total likelihood as a product of that for each pixel.

DEC

*A related approximation: point source templates are slow-varying compared to the PSF.
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Non-Poissonian Template Fitting with PSF

with point spread function (PSF)
Diffuse i.e. Poissonian data: D ~ Pois( Z S; CIDi(x)> D ~ Pois( 2 S; Cﬁ(x))

+ unresolved point sources: D ~ POiS< Z S; D(x) + (Dps(x)> D ~ POiS( 2 S; ®,(x) + PSF|®pg(x)| )

Likelihood from different pixels are
Fermi’s point spread function (PSF)

still independent. No longer true example at 2 GeV in HealPix (NSIDE=128)
in the presence of PSK.

NPTF approximately accounts for the PSF effect by

correctly® computing the 1-pixel (marginal) likelihood... o

3] = 14141 .. .

\ Can be 10% of a 10-count source
...but still treating the total likelihood as a product of that for each pixel.

DEC

*A related approximation: point source templates are slow-varying compared to the PSF.

How reliable are the posteriors produced from this likelihood?
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An overconfident fit under the coverage test

Example: fits to many simulations
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An overconfident fit under the coverage test

Example: fits to many simulations
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An example fit of the galactic center:
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An overconfident fit under the coverage test

Example: fits to many simulations
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An overconfident fit under the coverage test

Example: fits to many simulations
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Pointed out in Collin et al 2018

For this talk, | will focus on one of sources of NPTF’s overconfidence: un-modeled inter-pixel correlations.

8
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A toy example: a single uniform population of PS

We fit for overall normalization, against simulated data, to test coverage. coverage
(o] (o] o o o 10
PSF O — 0.8 O =— 0.6 O — 0.4 O — 0.2 O = 0.0 — ().8° === Simulations
— —— 0.6° —— NPTF est.
0.8 =—— (4° =====: (Gaussian est.
% -
= 0.6 1
=
£04-
<
0.2
Overconfident
0.0

00 02 04 06 08 1.0
Nominal coverage
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A toy example: a single uniform population of PS

We fit for overall normalization, against simulated data, to test coverage.
PSF 6 =0.%° c=0.6° c=04° c=0.2° c=0.0°

With a single template, fitted normalization ~ total count.

Total count likelihood given by NPTF is overconfident!

coverage
1.0
— ().8° === Simulations
e ().6° —— NPTF est.
0.8 4O mwen Gaussian est. & 4
>
&
= 0.6 -
=
O
S
S
Z 0.4
O
<
0.2
&7 Overconfident
0.0 #=

00 02 04 06 08 1.0
Nominal coverage
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A toy example: a single uniform population of PS

We fit for overall normalization, against simulated data, to test coverage. coverage
. 1.0
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With a single template, fitted normalization ~ total count. =
Total count likelihood given by NPTF is overconfident! 0-2
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A toy example: a single uniform population of PS

We fit for overall normalization, against simulated data, to test coverage. coverage
o o o o (o) 10
PSF O — 0.8 O =— 0.6 O — 0.4 O — 0.2 O = 0.0 — ().8° === Simulations
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=
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With a single template, fitted normalization ~ total count. =
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2 L Total count ~ marginalization in the diagonal direction
B Un-modeled positive correlation -> overconfidence!
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A toy example: single PS population

We fit for overall normalization, against simulated data, to test coverage.

PSF ¢ =0.8" simulation

PSF of one source

With a single template, fitted normalization ~ total count.

Total count likelihood given by NPTF is overconfident!

1-pixel (marginal) likelihood
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+ NPTF

(Gaussian /

PDF
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0.2

In this toy example, 2-pixel
correlation can be recaptured
with an Gaussian approximation
to the image likelihood, yielding a

fairly well-calibrated fit.
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A toy example: single PS population

We fit for overall normalization, against simulated data, to test coverage. coverage
PSF ¢ =0.8° 6 =0.6° 6= 0.4° 6=02° 6 =0.0° T
— —  (Gaussian
B 0.81
5 0.6
e H ; _;
£ 04-
=
Aside: share the same total count likelihood profile )2
but NPTF with different PSF gives different results " Dvercontident

(gives correct result for no PSF case) 00 02 04 06 08 10

Nominal coverage

In this toy example, 2-pixel
correlation can be recaptured
with an Gaussian approximation
to the image likelihood, yielding a
fairly well-calibrated fit.
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A toy example: single PS population

We fit for overall normalization, against simulated data, to test coverage. coverage
PSF ¢ =0.8° 6 =0.6° 6= 0.4° 6=02° 6 =0.0° T
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B 0.81
5 0.6
" - ;
. &
= 0.4-
=
Aside: share the same total count likelihood profile )2
but NPTF with different PSF gives different results " Dvercontident

(gives correct result for no PSF case) 00 02 04 06 08 10

Nominal coverage

In this toy example, 2-pixel
correlation can be recaptured
with an Gaussian approximation
to the image likelihood, yielding a
fairly well-calibrated fit.

Modeling multi-pixel
correlation in the
likelihood is
inherently hard.
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A toy example: single PS population

We fit for overall normalization, against simulated data, to test coverage. coverage
PSF ¢ =0.8° 6 =0.6° 6= 0.4° 6=02° 6 =0.0° T
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%@DO.G
3
2 04-
=
Aside: share the same total count likelihood profile )2
but NPTF with different PSF gives different results " Dvercontident

(gives correct result for no PSF case) 00 02 04 06 08 10

Nominal coverage

In this toy example, 2-pixel
correlation can be recaptured
with an Gaussian approximation
to the image likelihood, yielding a
fairly well-calibrated fit.

Modeling multi-pixel
correlation in the 9

likelihood is P
inherently hard.
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A toy example: single PS population

We fit for overall normalization, against simulated data, to test coverage. coverage
PSF ¢ =0.8° 6 =0.6° 6= 0.4° 6=02° 6 =0.0° T
— —  (Gaussian
. . - “ 0.8
%@DO.G
3
2 04-
=
Aside: share the same total count likelihood profile )2
but NPTF with different PSF gives different results " Dvercontident

(gives correct result for no PSF case) 00 02 04 06 08 10

Nominal coverage

Modeling multi-pixel A In this toy example, 2-pixel
correlation in the eo]/\ correlation can be recaptured
likelihood is —_— o0/ with an Gaussian approximation
)
®
11

inherently hard. IO to.the image !ikelihooq, yielding a
o je e |\ fairly well-calibrated fit.

T T T
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Simulation-Based Inference as a solution

Neural Posterior Estimator (as an example for SBI)

"

A

coverage

1.0
— NPTF

—  (Gaussian

=
00

=
>

+ + t + + +

o
S

o
®
Actual coverage

<
O

Overconfident

0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0

Nominal coverage
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Simulation-Based Inference as a solution

Neural Posterior Estimator (as an example for SBI)

Normalizing flow

Convolutional
Neural
Network

coverage
1.0
— NPTF
/ \ — (Gaussian

| ‘0‘ : | 0.8
@@ o

@ 1® 1® |\ = 0.6
ole|ele |\ S
=

o | £ 0.4-
summarized information =

0.2

Overconfident
0.0

12

00 02 04 06 08 1.0
Nominal coverage
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Simulation-Based Inference as a solution

Neural Posterior Estimator (as an example for SBI)

Normalizing flow

Convolutional
Neural
Network

coverage
1.0
— NPTF
/ \ — (Gaussian
@ ] —_— 0.81 —— SBI
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00 02 04
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08 1.0
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Simulation-Based Inference as a solution

Neural Posterior Estimator (as an example for SBI)

s L | s L s s s
+ + t + + +

Normalizing flow

Convolutional
Neural
Network

coverage
1.0
—— NPTF
/ \ — (Gaussian
@ | ——3p  0.84 — SBI
0]® -
@ 1® ® |\ = 0.6
ole|ele |\ S
S
. . . Z0.4-
summarized information =
0.2
Overconfident
0.0

~ p(0|D)

12
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Simulation-Based Inference as a solution

Neural Posterior Estimator (as an example for SBI) 0 coverage
| — NPTF
[\ / \ — (Gaussian
@@\ Normalizing flow el® | o
QI BEAN = 0.6
o/e/0|e@ eole @0 /\ §
=
. . . £0.4-
summarized information =
0.2
Convolutional Overconfident
Neural 0.0

00 02 04 06 08 1.0

Network ~ p ( 6 ‘ D) Nominal coverage

With energy binning: even more complicated correlations.
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Summary

- Non-Poissonian Template Fitting may be overconfident in fits of the Galactic Center.

- Un-modeled positive correlations between pixels causes the likelihood for point source
template normalization to be overconfident.

- Preliminarily, this effect accounts for a significant portion of the observed overconfidence
in our tests. More careful study upcoming.

- Simulation-Based Inference may be a solution to this issue.
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Summary

- Non-Poissonian Template Fitting may be overconfident in fits of the Galactic Center.

- Un-modeled positive correlations between pixels causes the likelihood for point source
template normalization to be overconfident.

- Preliminarily, this effect accounts for a significant portion of the observed overconfidence
in our tests. More careful study upcoming.

- Simulation-Based Inference may be a solution to this issue.

Thank you!
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Backup slides



NPTF fitting de-correlated data in toy example

Actual coverage
N
@N

o
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Overcon fident

00 02 04 06 08 1.0
Nominal coverage
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