Evaluating the Potential of Low Mass Stars as Sources of TeV Cosmic Rays

Kathryn Plant

What if there were a faint but abundant source class of Galactic cosmic rays?

Hillas plot featuring stars and planets

- Most stars are M dwarfs
- kilogauss magnetic fields

An abundant source class could contribute a large fraction of the cosmic ray flux without individual detectable gamma ray sources.

Fraction of cosmic rays contributed by m dwarfs

Fraction of cosmic rays contributed by m dwarfs

M dwarf Magnetic Activity

- Complex Small-scale fields
- Coronal & chromosphere activity

- Large-scale dipolar fields
- Aurora

Jupiter Lband image

Source: ATNF

Radio Light Curves illustrating auroral and coronal activity

Radio Light Curves illustrating auroral and coronal activity

Strong X mode polarization at Ka band \rightarrow Gyrosynchrotron unlikely

Particle energy limit estimates

1. Scaling from Earth's van Allen Belts

Earth:

Van Allen Belts maximum observed: ~500 MeV

 $R = 6.37 \times 10^8 cm$

 μ = 8 × 10^25 Gcm-3

M Dwarf:

 $R = 9.7 \times 10^{9} cm$

 μ = 3.7 × 10^33Gcm-3

E~0.1 PeV ?

Calculation scaled from Pizzella 2018

Particle energy limit estimates

2. Polar cap acceleration mechanism

- Ikhsanov and Biermann 2006
 estimated particle flux and maximum
 energy for a rapidly rotating white dwarf
- Here, I adapt that for an m dwarf
 - rotation period = 0.23 days
 - dipole field strength 2 kG
- Result: maximum proton energy ~TeV
- Proton flux from all m dwarfs = 10^-9 cm^2 s^-1

$$E_{AS} = \frac{1}{8\sqrt{3}} (\frac{\Omega R}{c})^{5/2} B_0$$

Conclusion

- There are plausible scenarios for m dwarfs to be sources of TeV cosmic rays, but they would likely be faint sources.
- Even the nearest individuals may be difficult to detect as gamma ray sources.