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Cosmic neutrino background

• temperature:  

• number density:  per flavor 
• expected to have the largest flux  
• detected only indirectly (BBN, CMB, large-scale structure…)

Tν = (4/11)1/3TCMB ≃ 1.945 K
nν ≃ 56 cm−3
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Coherent Enhancement 

• neutrino-neutron elastic scattering cross section: 

         

• neutrinos interact with more than one particles  

collectively;  

• : a number of particles in the sphere with a radius 

         
 
e.g.) neutron star 
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Neutron stars

• a star consists mostly of degenerate neutrons 
( , , , , ) 

• keep losing energy by  
photon and neutrino emissions  

• the standard cooling scenario  
predicts a cold  NS  

at  

• JWST can possibly detect a  NS located near ( ) earth

ρcore ∼ 1014−15 g/cm3 RNS ≃ 10 km MNS ≃ 1.5M⊙ pf,n ≃ 400 MeV pf,e ≃ 150 MeV

𝒪(100) K
tage = 109 yr

TNS ∼ 1000 K d ≲ 10 pc
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Particle capture by a NS

• relic neutrinos/sterile neutrino DM are first gravitationally attracted by a NS 

• capture rate:  

                         where       

• on the surface of a NS,  

• Heavy particles have kinetic energy  higher than  NS heating      
• Light particles have kinetic energy  lower than  NS cooling     

·N = πb2
maxvrelnν

bmax = ( 2GMNSRNS

v2
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Kν ≃ 3TNS →
Kν ≃ 3TNS →
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NS cooling due to C B scatteringsν
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• Energy loss rate of a NS: 

                                             

• : the cross section required for a neutrino to acquire energy equal to 

 

• neutrinos are subject to an effective matter potential 

                             

anti-neutrinos unlikely to overcome the potential barrier 

• Energy loss turns out to be quite small compared to that due to photon emission  

                      for 

LCνB = ·N × (3TNS − Kν) min (1,
⟨σ⟩
σth )
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NS heating due to  scatteringsνs

• Energy loss rate of a NS:  

• : a surface temperature of a NS observed at infinity 

                     

Lνs
= ·N(Eνs,surface − 3TNS) min (1,⟨σ⟩/σth)
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Summary

• a direct detection of C B is notoriously hard due to the small cross section 

• one of possible ways to overcome this difficulty is making use of a coherent 
scattering where the cross section is amplified by a factor of  

• a NS is cooled down by capturing relic neutrinos  

                for  

• a NS is heated up by capturing sterile neutrino DM 
 for sterile neutrinos with  

ν

NC

LCνB

Lγ
≃ 1.4 × 10−14 ( 105 K

TNS )
3

TNS = 105 K, mν = 0.1 eV

→ TNS = 1000 K sin θ2 ≳ 10−9
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Backup slides
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NS cooling curve
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• In the minimal cooling scenario,   

•  

•  

• Energy injection from sterile 
neutrino DM balances with energy 
loss due to a photon emission

dT
dt
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−ϵν − ϵγ + ϵCνB
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