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The Current State of DM Direct Detection
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The Current State of DM Direct Detection

Electron Recoil:
sub-GeV DM

Pushing search to
lighter DM
candidates
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Constraints on sub-GeV Dark Matter
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Constraints on sub-GeV Dark Matter
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Constraints on sub-GeV Dark Matter
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Model Building Challenges:
light DM requires dark sectors

Thermal production of MeV
DM is disallowed by BBN

Krnjaic, McDermott, 2019; An, Gluscevic,
Calabrese, Hill, 2022



Constraints on sub-GeV Dark Matter
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Benchmark Freeze-in Model

The Kinetic Mixing Portal

An ultralight dark photon v’ kinetically-mixed with the SM

hypercharge

Target of direct detection program!
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Ultralight mediator leads to large enhancement of the
direct detection cross section at low momentum transfers. J;
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Benchmark Freeze-in Model

Oe_

2

167ruieoz K

2

(ame)?

)

The Kinetic Mixing Portal
10—31 ¢
x s F
/ 2
V) = [ ' | Y o) (507
Lrh H:C B
r=m,/T —
=
iSh
e Previous work assumes T >>m :x_  =0. ©
x “rh
e Then, matching to the observed relic [
abundance today leads to — 10736 F
—>

k=eya/a~ 0107 Lo—37
1

Corrected prediction for the freeze-in benchmark by Bhattiprolu, McGehee, Pierce 2023
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Benchmark Freeze-in Model 5, = .
The Kinetic Mixing Portal (ame)
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Benchmark Freeze-in Model
The Impact of the Reheating Temperature }
: 3
o For Ty <<m : T  iction™ exp( -2m, /T) =
Kuzmin, Rubakov, 1998; g
Bringmann, Heeba, Kahlhoefer, Vangsnes 2021, Cosme, Costa, Lebedev, 2023 _8
o only SM particles in the tail of their velocity 3
distributions have enough energy to annihilate ~ #
into DM particles with m_>>T
e To counteract the suppressed production and obtain Energy
the observed DM abundance today, we need:
a larger portal coupling —a larger scattering cross section
R
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Benchmark Freeze-in Model
The Impact of the Reheating Temperature
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Benchmark Freeze-in Model

The Impact of the Reheating Temperature
10731 g

== The freeze-in benchmark
should be regarded as an
extended region defined by
the reheating temperature,
rather than a single curve.
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== A large portion of parameter
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Benchmark Freeze-in Model
The Impact of the Reheating Temperature
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Benchmark Freeze-in Model
The Impact of the Reheating Temperature
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The same story holds for
m > 1 GeV

Freeze-in (T, > m, )

=) A large portion of parameter
space is currently being
probed by direct detection!
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Aside: Max vs Reheat Temperature

e Our work assumes that the maximum temperature of the thermal bath is equal to
the reheating temperature

o Always valid in the instantaneous reheating approximation!

o Many examples also in the case of finite reheating (@), @)

REHEATIN G RADIATION DoMINATION
‘ Inflaton decays to radiation directly (ENTMPH PAONCTION ) (ENTRDPB CONVERSATION )
Chung, Kolb, Riotto, 1998; Giudice, Kolb, Riotto, 2000; Kolb, Notari, Riotto, 2003
Inflaton decays to an unstable particle which then Trax )'l—,.k
decays to radiation
Cosme, Costa, Lebedev, 2024 TMAX - Tﬂn
. Inflaton has generic dissipation rate dependent on Tow =T, T& > ‘/Ou
temperature and scale factor wax = 'ri
Co, Gonzalez, Harigaya, 2021 Tﬂl
Resonant reheating: s-channel inflaton annihilation : -
o0 g Je/p < Tee

Barman, Bernal, Xu, 2024



Conclusions

e We cannot neglect the impact of the reheating temperature on the benchmark
freeze-in model

e For T,k <<m_, DM production rate is exponentially suppressed, so that to achieve the
observed relic abundance we need:

a larger portal coupling — a larger DM-electron scattering cross section

e The freeze-in benchmark target is a region defined by the reheating temperature
rather than a single curve.

o Alarge portion of parameter space is currently being tested by direct detection!
o A potential future detection that lies between the current observational upper

limits and the traditional freeze-in benchmark would directly probe the
reheating temperature and the conditions of the universe in its earliest moments
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The Canonical Freeze-out story

e DM isin thermal equilibrium with SM when T>m_

e DM freezes outat TOm, /20
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The Canonical Freeze-out story

The WIMP miracle!

m,,, m,ando_ Oa, ’/m *reproduces the observed DM abundance (a,010% m, 0100 GeV)
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Model Building Challenges of Light Dark Matter

Necessity of a Dark Sector

e Lee-Weinberg bound: Weak scale couplings lead to an overabundance of DM for m <1 GeV

Lee, Weinberg 1977

mmmm) New BSM mediators below the weak scale are required!

e For asub-GeV DM candidate, if the dark sector is thermally coupled to SM, it is hard to
evade CMB injection constraints.

o Either asymmetric DM; or models with p-wave or kinematic suppression.

=) We can have a secluded sector (with no to negligible SM coupling)

See TASI lectures by Tongyan Lin for a review of all these constraints and the corresponding relevant papers on the subject.



Krnjaic, McDermott, 2019;

MOdel B“ilding Challenges Of Light Dark Matter An, Gluscevic, Calabrese, Hill, 2022

BBN constraints on thermal DM

| Thermal production of MeV DM is disallowed by BBN |

Only assumption is that DM is thermally coupled to SM

Precise constraints depend on the nature of DM particle
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A Lighting ReVieW Of Freeze—in Hall, Jedamzik, March-Russell, West 2010
DM from a feeble interaction with SM

e TFeeble interaction between DM and the SM so that DM is
never in thermal equilibrium with the SM bath

e Initial DM abundance is negligible
(i.e. inflaton reheats primarily the SM)

A«

e The DM abundance is built up gradually
(no inverse process!)

. . Vs ~ /\2]‘{[1)1 ~ )\2 My
e The process is insensitive to temperatures above the DM mass DM T MM

o The DM abundance is set by lowest T, i.e. TOm,_



Benchmark Freeze-in Model
The Kinetic Mixing Portal

L= L3\ — ix’“’{(w + %XWJ%W — & X, XX

Dark U'(1) SM hypercharge dirac fermionic DM

Diagonalizing the gauge basis {4, Z,,, X,,} in terms of the mass basis {A,,, Z,,, AL} we get

LD — eeALJgM - e'JgM (A:L — etan QWZM)

“ +iee [F"WIW, — (0,W, —o,W ) AW
X + (8, W, — 9, W) Arw ]

The effective kinetic mixing parameter is € = €y cos Oy

€
Below EW phase transition, we simply have: £ > —F ;/wF HY

Following prescription of Bhattiprolu, McGehee, Pierce 2023



Benchmark Freeze-in Model Ty
The Kinetic Mixing Portal vz )
! I k=eo |a I x
HT dy,
Sar > (085 g0) (X,
B
7 l dln Gx,s (accounts for varying number of relativistic degrees of freedom)
HIH =1+ 3707 '

Thermally averaged cross section:

<O-BB—>X)2U> = (n;q)g (47:)5 /Smin ds |M|BB—>x>Z 1 - S : 1 - T \/EKl(\/E/T)a

({e, n, 7}
{ve, vy, vr}
mmmmm) We sum over all SM particles B that produce DM at tree level < {u, ¢, t, d, s, b}

{n%, K%}

+
Following prescription of Bhattiprolu, McGehee, Pierce 2023 . |14




Benchmark Freeze-in Model
The Kinetic Mixing Portal

I_{T dY 2 00
- 0BB_ V) (YY) ) T 4y
s dT §< BB—xX >( X ) ’ <O—BB—>X)_(U> = (7)§<—q)2(47'r1)5 smmd IMlBB—>XX 1— —\/_Kl \/_/T)
For fermions f: 1€, M T} {Ve, Vyu, V7 } {u, ¢, t,d, s, b}
leptons neutrinos quarks
2 s+ 2m2) (s — m?% VZ?(s+2m? +A2 s — 4m?
Mf‘f—*xfc = 332 20’K? Ny (s + 2m? ) Q—Zf (s + Qm%) —2Q¢Vy tan Oy ( f) ( 2 + tan? Oy ! ( f) <2 5 f) ,
5 s[(s—mz) +mZF2] (s—mz) +m7I'5,
For scalars ¢: {wi, K i} For the W boson:
2
Mg = e <1 L ) (1 _dm ¢) | F g et (22 () 2oy 2
S S = 7" mw 52 [(s - mZ) + m2ZF2]

Following prescription of Bhattiprolu, McGehee, Pierce 2023



Benchmark Freeze-in Model
The Impact of the Reheating Temperature
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Benchmark Freeze-in Model
The Impact of the Reheating Temperature
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