

Unraveling the Complex Gamma-Ray Emission from eHWC J1825-134 Region with HAWC: the Transition of TeV Halo

Dezhi Huang for the HAWC Collaboration
University of Maryland, College Park
TeV Particle Astrophysics (TeVPA), Chicago, 2024

Improved Pass5 Reconstruction

Two extended source associated with PWNe

 One ultra-high energy point like source with the energy beyond 200 TeV

 More structures are emerging in this complex region

• One bright hotspot located on top of the gamma-ray binary LS 5039

Modeling the Region

- Using 3ML framework and HAL plugin
- Utilized systematic multi-source fitting to model the entire region
- Best-fit contains 5 gamma-ray sources and diffuse background emission
- 3 extended sources (Gaussian model), and 2 point like sources
- LHAASO resolve 3 sources inside this region

Modeling the Region

Four Major Sources in the Region

Significance contours from 14 to 52 sigma

1.J1825 PWN

•0.22° extended

2.J1825 Halo

•0.77° extended

3.J1826 PWN

•0.14° extended

4.LS 5039

Point like

PSR J1826-1334 is a powerful pulsar with $\dot{E}=2.8\times10^{36} erg/s$ at age of 21.4 kyr

PSR J1826-1334 is a powerful pulsar with $\dot{E}=2.8\times10^{36} erg/s$ at age of 21.4 kyr

- PWN part has harder spectrum to higher energy
- Halo part has softer spectrum cut off around 30 TeV

Hybrid System of PWN and Halo

- Removed the emission from other sources inside the region
- The hybrid system measured with 47 σ in the HAWC data
- Previous studies indicate the energy dependent morphology of the system

Significance contours from 14 to 46 sigma

Energy-Dependent Morphology — Extension

- Higher energy electrons will cool faster, higher energy photos will have a smaller extension
- An extended gaussian with powerlaw spectrum fitted to the different energy data sets

The size from different energy range and individual source will be studied in the future analysis

Energy-Dependent Morphology — Spectrum Index

- H.E.S.S. looked at index inside square regions
- HAWC look at index inside annulus

Energy-Dependent Morphology — Spectrum Index

- Location fixed at pulsar PSR J1826-1334
- Fit a powerlaw inside each 0.2° annuli

High Altitude Water Cherenkov

SNR (hadronic/leptonic) TeV Halo (escaped e+e-) PWN (confined e+e-)

Credit: https://doi.org/10.1103/PhysRevD.100.043016

Discussion

Credit: https://doi.org/10.1051/0004-6361/201936505

Electron density falls lower than the ISM

Electrons are diffusing through the ISM

18 TERSITA

Acknowledgments

Could this be a hybrid system where electrons have started diffusing into the ISM?