

A search for the ultra high energy neutrinos with the low threshold phased array trigger system of the Askaryan Radio Array

Paramita Dasgupta for the ARA Collaboration

11th June, 2024

ARA Detector Overview

ARA's 5th station compared to other ARA stations

A1 - A4

Paramita Dasgupta, CCAPP, Ohio State Univ.

A5 + PA system

A Phased Array Trigger Design

- Phased Array demonstrated capabilities of triggering on low SNR signals which are otherwise buried in noise
- Phased Array improves signal strength by combining multiple signals together before the signals are fed into the trigger system

- Adds signals together in predetermined directions ("beams") through delay-andsum method.
- Plane wave signals add coherently, noise likely does not. This effectively lowers trigger threshold
 Impulsive plane wave (eg., neutrino signal)

The phased array detector

Analysis with PA alone significantly improves trigger efficiency and analysis efficiency

A Pioneering Hybrid Analysis

- Hybrid design = Phased array + 7 A5 Vpols readout through the Phased Array DAQ
- **Unique detector, representative of next** generation of detectors like RNO-G & IceCube-Gen2
- Livetime : 2020 + 2021 data from hybrid system
- Blinded analysis using "burn sample" randomly selecting 1 in every 10 events

Optimize cuts for 5 σ **discovery potential**

Paramita Dasgupta, CCAPP, Ohio State Univ.

Combine PA & ARA subdetectors to maximize background rejection & analysis efficiency

Marco Muzio, Penn State

Paramita Dasgupta, Ohio State

Advantages of a Hybrid detector

- Improved Pointing accuracy
 - position
- on direction and timing information

Classification of ARA data

1. Calibration Pulser Events

Recoded every second for in-situ calibration

2. Software Trigger Events (Forced Triggers)

Recorded every second to monitor the detector performance, sample the noise environment

3. RF Trigger Events

Mostly thermal events + non-thermal background (eg, CR, CW, anthropogenic events,) + non-thermal ν -induced signal events

Paramita Dasgupta, CCAPP, Ohio State Univ.

) E 800 Calpulser ev 1 chan 0 Voltage 009 400 Calpulser ev 1 chan 1 200 -200 -400 -600 -800 -100 -150 Time (ns) **Thermal noise event** 15 10 Voltage (mV) -5 -10-15200 400 600 0 Time (ns)

Calibration pulser event

Reconstruction of Source location with A5-PA hybrid system

- **Excellent pointing accuracy with A5-PA antennas, improved vertex** reconstruction would lead to improved analysis efficiency
- Improved surface background removal using correlation map

Paramita Dasgupta, CCAPP, Ohio State Univ.

Reconstructed pulser source location using A5-PA hybrid antennas

Background removal: Continuous Wave (CW) Signals

- **CW** occurs at a specific frequency intermittently depending on time of the day, time of the year
- **CW** signals identified in frequency domain
- We use the Sine Subtraction method developed for the **ANITA experiment** [Gorham et. al Phys. Rev. D, 98:022001]
- Filter allows event contaminated with CW signal to be cleaned so they can remain in the burn sample

Paramita Dasgupta, CCAPP, Ohio State Univ.

SSW SNR

SSW SNR

best corr

Paramita Dasgupta, CCAPP, Ohio State Univ.

LDA combine analysis variables from data & simulation **Converts many variables into 1D discriminant coord.**

Separating Thermal Noise from Signal: Fisher Discriminant

- We train linear discriminant to maximize separation in our selection variable space.
- We will set a cut for the best expected sensitivity.
- Final cut will be on LDA value & optimized for 5 σ discovery assuming IceCube 2018 limit as flux model (https://arxiv.org/abs/ 1807.01820

Paramita Dasgupta, CCAPP, Ohio State Univ.

* Large fluctuations in simulated neutrino distribution due to limited statistics at low energies additional simulations underway

Separating Thermal Noise from Signal: Fisher Discriminant

- We train linear discriminant to maximize separation in our selection variable space.
- We will set a cut for the best expected sensitivity.
- Final cut will be on LDA value & optimized for 5 σ discovery assuming IceCube 2018 limit as flux model (https://arxiv.org/abs/ 1807.01820

Paramita Dasgupta, CCAPP, Ohio State Univ.

* Large fluctuations in simulated neutrino distribution due to limited statistics at low energies additional simulations underway

Separating Thermal Noise from Signal: Fisher Discriminant

- We train linear discriminant to maximize separation in our selection variable space.
- We will set a cut for the best expected sensitivity.
- Final cut will be on LDA value & optimized for 5 σ discovery assuming IceCube 2018 limit as flux model (https://arxiv.org/abs/ 1807.01820

Paramita Dasgupta, CCAPP, Ohio State Univ.

* Large fluctuations in simulated neutrino distribution due to limited statistics at low energies additional simulations underway

Projected Sensitivity

- **Expected number of events with analyzed** livetime of only 1.38 years
 - Kotera et al. flux: ~0.12 events
 - van Vliet et al. (Auger) flux: ~0.61 events •
 - IceCube 2018 limit flux: ~0.79 events

Paramita Dasgupta, CCAPP, Ohio State Univ.

*Projected assuming same analysis efficiency as 2019 PA analysis

Summary

- Pioneering diffuse neutrino search combining phased array trigger with traditional deep antennas
- Representative of next generation of in-ice radio neutrino experiments like RNO-G, IceCube-Gen2 Radio (same hybrid design as A5-PA)
- Effects of Biaxial Birefringence on Polarization Reconstruction (talk from Alan Salcedo Gomez)
- New DAQ and trigger architecture (talk from Pawan Giri)

Paramita Dasgupta, CCAPP, Ohio State Univ.

Thank you

