

Simulating and validating air-shower radio emission with CORSIKA 8

T. Huege, N. Karastathis, R. Prechelt, J. Ammerman-Yebra, M. Reininghaus for the CORSIKA 8 Collaboration

KIT - The Research University in the Helmholtz Association

CORSIKA

The CORSIKA code in astroparticle physics

CORSIKA: A Monte Carlo code to simulate extensive air showers

D. Heck (Karlsruhe, Forschungszentrum), J. Knapp (Karlsruhe U., EKP), J.N. Capdevielle (College de France), G. Schatz (Karlsruhe, Forschungszentrum), T. Thouw (Karlsruhe, Forschungszentrum) Feb, 1998

90 pages Report number: FZKA-6019

D pdf

[→ cite Ð links

reference search

IPDFI CORSIKA: A Monte Carlo code to simulate extensive air showers

F

JN Capdevielle, G Schatz, T Thouw - digbib.bibliothek.kit.edu CORSIKA is a program for detailed simulation of extensive air showers initiated by high energy cosmic ray particles. Protens, light nuclei up to iron, photons, and many other ... ☆ Speichern 55 Zitierer Zitiert von: 2288 Ännliche Artikel 🔊

The need for a CORSIKA 7 successor

- CORSIKA 7 has monolithic FORTRAN code (several dialects mixed), key developers retired, hard to navigate by physicists today
- program "options" heavily intertwined in the source code
- hand-optimized: fast, but incurs limitations, for example: atmospheric model based on strictly exponential density profiles
- especially the radio community needs more flexibility: in-ice showers, cross-media showers, complex signal propagation, ...
- the astroparticle physics community needs a worthy, well-supported and realiably maintained successor – for *decades* to come

C@RSIKA 8 simulation framework

- a modern reimplementation in C++, with focus on modularity
- designed with the needs of modern computing in mind
- coordinated by KIT, but as a true community effort

The CORSIKA 8 project is coordinated by the steering committee consisting of the following members (deputies):

- Tim Huege <tim.huege@kit.edu>: project coordination
- Dominik Baack (Alexander Sandrock): electromagnetic interactions
- Tanguy Pierog (Felix Riehn): hadronic interactions
- Alan Coleman (Max Reininghaus): software development
- Augusto Alves jr.: performance, parallelization
- Lukas Nellen: deployment, continuous integration

CORSIKA 8 workshop, July 2023 at KIT

https://gitlab.iap.kit.edu/AirShowerPhysics/corsika/

Status of C@RSIKA8

- code can be considered "physics-complete" and is openly available
- Started in 2018, *many* crucial improvements over the last two years
 - FLUKA as low-energy interaction model
 - Sibyll 2.3d, QGSJETII-04, EPOS-LHC as high-energy interaction models, also Pythia 8.3 (testing version) available for the first time
 - EM: Photohadronic interactions, LPM effect, Particle thinning
 - Fully integrated Cherenkov-light calculation
 - Fully realistic radio emission calculation with two formalisms
- extensive validation versus CORSIKA 7 and other codes
- still polishing user-level aspects (sim. steering, documentation, ...)
- already very useful for the in-ice radio endeavors!

Radio in CORSIKA 8

Radio-emission simulations

 radio emission from particle cascades fully implemented

 two formalisms: "CoREAS" (endpoints) à la C7 and "ZHS" à la ZHAireS

generic structure

l powerful diagnostic

Comparison C8 vs C7 vs ZHAireS

- Select "similar" showers
- Standard settings for particle tracking
 - C8 max geomagnetic deflection angle 0.2 rad
 - C7 STEPFC 1.0 and max deflection 0.2 rad
- Vertical 10¹⁷ eV, 50 μT horizontal B-field, Sybill
 2.3d & FLUKA, 0.5 MeV em particle cut, 10⁻⁶ opt. thinning, US standard atmo with n₀=1.000327

Radio-emission 30-80 MHz

- state at ICRC2023
- patterns and polarizations match
- C8 produces slightly more signal!?

$$imes \left(ec{v} \, imes \, ec{B}
ight)$$

ec v

modulus

 $ec{v}\, imes\,ec{B}$

`

Tim Huege <tim.huege@kit.edu>

Both codes at 0.2 rad maxRadians!

 $ec{v}$

Comparing the formalisms

"Endpoints" (CoREAS) and ZHS formalisms

 $\vec{x}_{2}, \vec{\beta}_{2}, t_{2}$ "discretization" of curved trajectories – does step size matter?

"emission from tracks", Observer x, t vector potential in the time domain Alvarez-Muniz, Carvalho, Zas, Astropart. Phys. (2012)

previously "endpoints" in CORSIKA 7 & ZHS in AireS – hard to compare
 now both in same code, can compare for exact same air shower!

Fluence distribution ZHS/endpoints (CoREAS)

Very good agreement where signal is significant with small steps

Comparing C8 and C7

Reason for C8 radio-emission overestimation

- EM cascade in C8 based on PROPOSAL 7.6.2 (CORSIKA 7 uses modified EGS)
- EM lateral distributions differ, more coherence in C8
- Likely due to particle tracking & multiple scattering treatment

At 30-80 MHz improvement from +30% to -10% difference in radiation energy

Fluence maps comparison for small steps

Pulses C8 vs. C7 for small steps, 30-80 MHz

1PeV vertical shower: pulses agree nicely for small steps

Pulses C8 vs. C7 for small steps, 50-350 MHz

1PeV vertical shower: pulses agree nicely for small steps

- Smaller tracks lead to ~12% more radiation energy, known before, cf. Gottowik et al., Astropart. Phys. 103 (2018) 87-93
- Fluence distribution in footprint (Xmax) changes only on "few %" level

In-ice radio sims with C8

In-ice Showers and Verification of NuRadioMC

work by Alan Coleman, Maria Duran, Christian Glaser (Uppsala University)

CORSIKA 8 can be used in dense media (ice) Here: homogeneous ice with n=1.78 with antennas 1km from interaction vertex

CORSIKA 8 prediction reproduces previous results (ARZ model parameterized from ZHAireS simulations)

Next step: Study effect of inhomogeneous media (now enabled by CORSIKA8)

Cross-media Showers (Air-Shower Core impacting Ice)

work by Alan Coleman, Maria Duran, Christian Glaser (Uppsala University)

Plots show in-ice Askaryan emission only

Comparison with Askaryan emission models of neutrino-induced showers show (very) coherent emission (Askaryan model evaluated for deposited inice energy as shower energy)

Next step: create a fast emission model of shower cores hitting the ice based on C8 simulations!

1EeV vertical Air Shower at South Pole

UPPSALA

Conclusions

- CORSIKA 8 radio implementation successfully validated
- C8 results sensitive to simulation step size (tracking/scattering details)
- ZHS and CoREAS formalisms converge at the same result within 1-2%
- C8 and C7 agree within 10% in radiation energy for small steps
- For C7, changes in stepsize have small (and known) effect, changes to footprint (for Xmax reconstruction) are very minor
- Microscopic radio simulations continue to be robust and trustable
- In-ice radio-emission sims in C8 work well and show excellent agreement with previous results!

Backup

A random look inside the CORSIKA 7 code

2091	* ' IS NOT IMPLEMENTED'	2125	#else
2092	#ifPARALLELIB	2126	IF (THETAP .GT. 70.D0*(PI/180.D0)) GOTO 46
2093	call printstatusstop(NRRUN, MPIID,	2127	#endif
2094	* 'COMBINATION OF VIEWCONE AND VOLUMECORR IS NOT IMPLEMENTED')	2128	IF (XVC2 .NE. 0.D0 .OR. YVC2 .NE. 0.D0) THEN
2095	#endif	2129	<pre>PHIP = ATAN2(YVC2,XVC2) + PHIPR(1)</pre>
2096	STOP	2130	ELSE
2097	#else	2131	PHIP = PHIPR(1)
2098	46 CALL RMMARD(RD,3,1)	2132	ENDIF
2099	#endif	2133	IF (PHIP .GT. PI2) PHIP = PHIP - PI2
2100	CT1 = COS(VUECON(1))	2134	IF (PHIP .LT. 0.D0) PHIP = PHIP + PI2
2101	CT2 = COS(VUECON(2))	2135	- ENDIF
2102	CTT = RD(2) * (CT2 - CT1) + CT1	2136	#endif
2103	THETAP = $ACOS(CTT)$	2137	#ifIACT
2104	PHIP = RD(1) * PI2	2138	CALL EXTPRM(PRMPAR(0), PRMPAR(1), THETAP, PHIP)
2105	C TEMPORARY CARTESIAN COORDINATES	2139	CTT = COS(THETAP)
2106	XVC1 = COS(PHIP)*SIN(THETAP)	2140	#endif
2107	YVC1 = SIN(PHIP)*SIN(THETAP)	2141	#ifCURVED
2108	ZVC1 = COS(THETAP)	2142	C COSINE OF APPARENT ZENIT ANGLE IS PUT IN PRMPAR(15)
2109	C ROTATE AROUND Y AXIS	2143	C (COSINE OF LOCAL ZENIT ANGLE IS IN PRMPAR(2))
2110	XVC2 = XVC1*COS(THETPR(1)) + ZVC1*SIN(THETPR(1))	2144	PRMPAR(15) = COS(THETAP)
2111	YVC2 = YVC1	2145	#else
2112	ZVC2 = ZVC1*COS(THETPR(1)) - XVC1*SIN(THETPR(1))	2146	PRMPAR(2) = COS(THETAP)
2113	#if !VOLUMEDET	2147	-#endif
2114	C FOR A HORIZONTAL TARGET, THE COS(THETA) WEIGHT IS OBTAINED BY	2148	ELSE
2115	C THROWING THE DICE ANOTHER TIME.	2149	#ifCURVED &&UPWARD
2116	IF (RD(3) .GT. ZVC2) GOTO 46	2150	IF (FIMPCT) THEN
2117	#endif	2151	C SKIMMING INCIDENCE, COSTAP AT DETECOR IS 0
2118	THETAP = ACOS(ZVC2)	2152	THETAP = 0.5D0 * PI
2119	#ifCURVED	2153	CTT = 0.D0
2120	#if CERENKOV	2154	C CHOOSE IMPACT PARAMETER AT RANDOM
2121	IF (THETAP .GT. 88.D0*(PI/180.D0)) GOTO 46	2155	CALL RMMARD(RD,1,1)
2122	#else		
2123	IF (THETAP .GE. 90.D0*(PI/180.D0)) GOTO 46		3 000 lines plus interaction models
2124	#endif	O	\mathbf{D},\mathbf{U}
			•

ARENA2024 Chicago

Radio-emission 50-350 MHz

- patterns and polarizations match
- C8 produces slightly more signal

Both codes at 0.2 rad maxRadians!

$$ec{v}\, imes\,\left(ec{v}\, imes\,ec{B}
ight) \ ec{v}\, imes\,ec{B}$$

modulus

v x B [m]

Energy Fluence [eVm⁻²]

 $ec{v}$

Comparison of formalisms at 50-350 MHz

ARENA2024 Chicago

Comparison of C8 vs C7 at 50-350 MHz

Slightly more strucutre than at 30-80 MHz, to be checked further?

Known radiation energy scaling for C7 stepsize

See Gottowik et al., *Astropart.Phys.* 103 (2018) 87-93, yielding a 11% increase of radiation energy

- Effect much smaller than in CORSIKA 8
- We (independently) find again a +12% effect at 30-80 MHz

Spectra C8 vs. C7 for small steps

1PeV vertical shower: spectra agree mostly well

Cross-media showers for in-ice radio detection

- C8 environment setup is very flexible
- cross-media particle showers natural
- very relevant for in-ice radio-detection community, first glimpse below

z polarization

Tim Huege <tim.huege@kit.edu>

ARENA2024 Chicago