

ARENA 2024 - Chicago 11th June 2024

Quantifying energy fluences and their uncertainties in the presence of noise

Sara Martinelli, Dr. Tim Huege, Dr. Diego Ravignani, Dr. Harm Schoorlemmer

Energy Fluence

It is the energy deposit per unit area in terms of radio waves. The total fluence at a given antenna position is the time integral of the Poynting vector:

$$f_{\text{tot}}(\vec{r}) = \epsilon_0 c \Delta t \sum_{\text{pol}}^3 \left(\sum_j E_{\text{pol}}^2(\vec{r}, t_j) \right) = \sum_{\text{pol}}^3 f_{\text{pol}}(\vec{r})$$

We need a method to estimate the energy fluence in the presence of noise.

The noise subtraction method is largely used within the radio community: - works well for large signal-to-noise ratio (SNR)

We need a method to estimate the energy fluence in the presence of noise.

The noise subtraction method is largely used within the radio community: - works well for large signal-to-noise ratio (SNR)

We need a method to estimate the energy fluence in the presence of noise.

The noise subtraction method is largely used within the radio community: - works well for large signal-to-noise ratio (SNR) - an SNR threshold cut is usually imposed

(as defined in the next slide)

$$SNR_{tot} = \left(\frac{A_{tot}^{Hilb}|_{max}}{A_{tot}^{RMS}}\right)^2$$

(similar definition at polarisation level)

 \checkmark

$$\hat{f}_{\rm pol}(\vec{r}) = \epsilon_0 \, c \, \Delta t \left(\sum_{t_j=t_1}^{t_2} E_{\rm pol}^2(\vec{r}, t_j) + \dots \right)$$

Definition of the signal window

Definition of the noise window

$$\hat{e}_{\text{pol}}(\vec{r}) = \epsilon_0 c \Delta t \left(\sum_{t_j=t_1}^{t_2} E_{\text{pol}}^2(\vec{r}, t_j) + \ldots \right)$$

Definition of the signal window

 $\hat{f}_{\rm pol}(\vec{r}) = \epsilon_0 \, c \, \Delta t \left(\sum_{t_j=t_1}^{\iota_2} E_{\rm pol}^2(\vec{r}, t_j) + \ldots \right)$

Definition of the noise window

Fluence estimator & uncertainty

$$\hat{f}_{\text{pol}}(\vec{r}) = \epsilon_0 \, c \, \Delta t \left(\sum_{t_j=t_1}^{t_2} E_{\text{pol}}^2(\vec{r}, t_j) - \frac{t_2 - t_1}{t_4 - t_3} \sum_{t_j=t_3}^{t_4} E_{\text{pol}}^2(\vec{r}, t_j) \right)$$

Subtraction of the normalized noise fluence

 \rightarrow the estimator can be negative

Definition of the signal window

Definition of the noise window

 $\hat{f}_{\text{pol}}(\vec{r}) = \epsilon_0 c \Delta t \left(\sum_{t_j=t_1}^{t_2} E_{\text{pol}}^2(\vec{r}, t_j) + \ldots \right)$

$$\hat{f}_{\rm pol}(\vec{r}) = \epsilon_0 \, c \, \Delta t \left(\sum_{t_j=t_1}^{t_2} E_{\rm pol}^2(\vec{r}, t_j) - \frac{t_2 - t_1}{t_4 - t_3} \sum_{t_j=t_3}^{t_4} E_{\rm pol}^2(\vec{r}, t_j) \right)$$

Underestimated (backup)

 $\delta(\hat{f}_{\rm pol}(\vec{r})) = \sqrt{4 \epsilon_0 c \Delta t \hat{f}_{\rm pol}(\vec{r}) \sigma_e^2} + 2 (\epsilon_0 c)^2 \Delta t \sigma_e^4$

It assumes the measured amplitude is the sum of the pulse and the noise (Gaussian- distributed)

%

Radio measurements have both an amplitude and a phase

• The signal and the **random noise** can add up constructively or destructively.

Radio measurements have both an amplitude and a phase

- The signal and the **random noise** can add up constructively or destructively.
- Our measurement can be expressed as the sum of constant known phasor s and a random phasor sum (Rayleigh-distributed noise).

Radio measurements have both an amplitude and a phase

- The signal and the **random noise** can add up constructively or destructively.
- Our measurement can be expressed as the sum of constant known phasor s and a random phasor sum (Rayleigh-distributed noise).
- The **marginal P.D.F**. of the measured **amplitude** is the Rice distribution.

$$p_A(a|s,\sigma) = \begin{cases} \frac{a}{\sigma^2} \cdot \exp\left(-\frac{a^2+s^2}{2\sigma^2}\right) \cdot I_0\left(\frac{as}{\sigma^2}\right) & a > 0\\ 0 & \text{otherwise} \end{cases}$$

The formalism is valid for both time and frequency domains

 $a \sim \mathcal{R}ice(s, \sigma)$

 $a \sim \mathcal{R}ice(s, \sigma)$

Error propagation

We developed a method:

- using the statistical background based on the Rice distribution to build a fluence estimator

- evaluating the fluence in the frequency domain:

$$f_{\rm pol}(\vec{r}) = \epsilon_0 \, c \, \Delta t \, \sum_{j=0}^{N-1} E_{\rm pol}^2(\vec{r}, t_j) = 2 \, \epsilon_0 \, c \, \frac{\Delta t}{N} \, \sum_{j=0}^{M-1} |D_{\rm pol}(v_j)|^2$$

(Parseval's Theorem)

Signal window: Tukey function and FFT

Signal window: Tukey function and FFT

M frequencies

$$\hat{f}_{a} = K \sum_{j=0}^{M-1} a^{2}(v_{j}) = \sum_{j=0}^{M-1} \hat{f}_{a}(\nu_{j})$$
 measured

Signal window: Tukey function and FFT

 $\hat{f}_{a} = a^{2}$

measured

Signal window: Tukey function and FFT

Noise windows: Tukey function, FFT

j-th frequency

$$\hat{f}_{a} = a^{2}$$

Signal window: Tukey function and FFT

Noise windows: Tukey function and FFT

Signal window: Tukey function and FFT

Noise windows: Tukey function and FFT

Estimator and uncertainty

j-th frequency

$$\delta f_s = \sqrt{\hat{f}_n \left(\hat{f}_n + 4\,\hat{f}_s\right)}$$

(Derivation in the backup)

Signal window: Tukey function and FFT

Noise windows: Tukey function and FFT

Estimator and uncertainty

M times!

M frequencies!

$$\hat{f}_{\rm s} = \sum_{j=0}^{M-1} \hat{f}_{\rm s}(\nu_j)$$
$$Var(\hat{f}_{\rm s}) = \sum^{M-1} Var(\hat{f}_{\rm s}(\nu_j))$$

j=0

sara.martinelli@kit.edu

Definition of the signal and noise windows

Signal window: Tukey function and FFT

Noise windows: Tukey function and FFT

Estimator and uncertainty

Error propagation

We can now compare the noise subtraction method and the Rice method...

Simulations

- 8000 proton/iron/nitrogen/helium CORSIKA/CoREAS simulations
- Energy $\rightarrow 10^{18.4}$ to $10^{20.1}$ eV
- Zenith \rightarrow 65 to 85 deg
- Detector simulation (antenna response unfolded back)

The Radio Detector of Auger is used for practical reasons

Simulations

Background traces recorded over one year at the Auger site

Noise Library

 $E \left[\mu V/m\right]$

Quality cut: stations affected by thinning artifacts (above 2 Cherenkov radii)

On average the Rice-based method is unbiased even at small SNR

$$\psi = \frac{\hat{f}_{\text{pol}}(\vec{r})}{f_{\text{pol}}(\vec{r})}$$
 Bias = $\tilde{\psi} - 1$

The relative errors are smaller than the reconstruction resolution of the same bin

The relative errors of the new method reflect better the reconstruction resolution

 $\sigma_{\rm rec} \approx \frac{{\rm i.q.r.}}{1.35}$

 $\mathrm{SNR}_{\mathrm{tot}} = \left(\frac{A_{\mathrm{tot}}^{\mathrm{Hilb}}|_{\mathrm{max}}}{A_{\mathrm{tot}}^{\mathrm{RMS}}} \right)^2 \qquad 36$

37

The noise subtraction method underestimates the uncertainties at any SNR.

CAVEAT: SNR<15 excluded in both plots for a fair comparison

- The fluence estimation based on the Rice distribution shows a smaller bias than the noise subtraction method for small SNR values (on average less than 10%)
- At larger SNR values, the bias of both methods is comparable (on average less than 5%)
- The Rice-distribution method correctly estimate the uncertainties at any SNR (coverage about 68%)
- Paper soon ready for journal submission

1. Definition of the trace:
$$A_{\text{tot}}^{\text{Hilb}}(\vec{r},t) = \sqrt{\sum_{\text{pol}}^{3} |E_{\text{pol}}^{\text{Hilb}}(\vec{r},t)|^2}$$

1. Definition of the trace:
$$A_{\text{tot}}^{\text{Hilb}}(\vec{r},t) = \sqrt{\sum_{\text{pol}}^{3} |E_{\text{pol}}^{\text{Hilb}}(\vec{r},t)|^2}$$

2. Algorithm to find the maximum of the trace: $A_{\text{tot}}^{\text{Hilb}}|_{\text{max}}$

1. Definition of the trace:
$$A_{\text{tot}}^{\text{Hilb}}(\vec{r},t) = \sqrt{\sum_{\text{pol}}^{3} |E_{\text{pol}}^{\text{Hilb}}(\vec{r},t)|^2}$$

2. Algorithm to find the maximum of the trace: $A_{\text{tot}}^{\text{Hilb}}|_{\text{max}}$

3. Noise level evaluated in the noise window (RMS): $A_{\text{tot}}^{\text{RMS}} = \sqrt{\sum_{t_j=t_1}^{t_2} \frac{1}{N} \left(A_{\text{tot}}^{\text{Hilb}}(\vec{r}, t_j) \right)^2}$

44

1. Definition of the trace:
$$A_{\text{tot}}^{\text{Hilb}}(\vec{r},t) = \sqrt{\sum_{\text{pol}}^{3} |E_{\text{pol}}^{\text{Hilb}}(\vec{r},t)|^2}$$

2. Algorithm to find the maximum of the trace: $A_{\text{tot}}^{\text{Hilb}}|_{\text{max}}$

3. Noise level evaluated in the noise window (RMS): $A_{\text{tot}}^{\text{RMS}} = \sqrt{\sum_{t_j=t_1}^{t_2} \frac{1}{N} \left(A_{\text{tot}}^{\text{Hilb}}(\vec{r}, t_j) \right)^2}$

4. Definition of the SNR over all the polarisation:
$$SNR_{tot} = \left(\frac{A_{tot}^{Hilb}|_{max}}{A_{tot}^{RMS}}\right)^2$$

(similar definition at polarisation level)

 $b = a/\sigma$ Change of variable

 σ Noise at bin level

$$E(b^{2}) = 2 + (s/\sigma)^{2}$$

$$Var(b^{2}) = 2 \left(2 + 2 (s/\sigma)^{2}\right)$$

$$a^{2} = \sigma^{2} b^{2}$$

$$E\left(\hat{f}_{a}\right) = E(a^{2}) = \sigma^{2} E(b^{2})$$

$$Var(\hat{f}_{a}) = Var(a^{2}) = \sigma^{4} Var(b^{2})$$

$$Variance$$

Derivation:

i-th window:

 $n_i \sim Rayleigh(\sigma)$

Change of variable

 $(n_i/\sigma)^2 \sim \chi^2(DF=2)$

normally distributed (N large)

Derivation:

 $\hat{f}_{\mathrm{n}} = \frac{1}{N} \sum_{i=0}^{N-1} n_i^2$

$$T = \sum_{i=0}^{N-1} (n_i/\sigma)^2 \sim \mathcal{N}(\mu = 2N, SD = 2\sqrt{N})$$

normally distributed $\hat{f}_n = \frac{\sigma^2}{N}T \sim \mathcal{N}(\mu = 2\sigma^2, SD = 2\sigma^2/\sqrt{N})$ Unbiased estimator of $2\sigma^2 := f_n$

Sample standard deviation can be neglected

Derivation:

$$\hat{f}_s = \hat{f}_a - \hat{f}_n$$
$$\mathbf{E}\left(\hat{f}_s\right) = \mathbf{E}\left(\hat{f}_a\right) - \mathbf{E}\left(\hat{f}_n\right) = s^2 = f_s$$

60

Derivation:

$$\hat{f}_s = \hat{f}_a - \hat{f}_n$$
$$\mathbf{E}\left(\hat{f}_s\right) = \mathbf{E}\left(\hat{f}_a\right) - \mathbf{E}\left(\hat{f}_n\right) = s^2 = f_s$$

Physical boundary

$$\hat{f}_s = \begin{cases} \hat{f}_a - \hat{f}_n \text{ if } \hat{f}_a \ge \hat{f}_n \\ 0 \text{ if } \hat{f}_a < \hat{f}_n \end{cases}$$

Derivation:

$$\hat{f}_s = \begin{cases} \hat{f}_a - \hat{f}_n & \text{if } \hat{f}_a \ge \hat{f}_n \\ 0 & \text{if } \hat{f}_a < \hat{f}_n \end{cases}$$
$$\operatorname{Var}(\hat{f}_s) = \operatorname{Var}\left(\hat{f}_a\right) = 4 \,\sigma^2 \left(\sigma^2 + 2 \,s^2\right)$$

Derivation:

Freq [MHz]

Freq [MHz]

Toy Monte Carlo (using the Rice P.D.F. and the estimator derived)

$$\hat{f}_s = \begin{cases} \hat{f}_a - \hat{f}_n \text{ if } \hat{f}_a \ge \hat{f}_n \\ 0 \text{ if } \hat{f}_a < \hat{f}_n \end{cases}$$

Reference: C. Glaser's PhD thesis

5.5.2 Uncertainty of the energy fluence

We estimate the uncertainty of the energy fluence by assuming that the measured electric-field amplitude A(t) is the sum of the cosmic-ray radio pulse S(t) and noise e(t). Furthermore, we assume that the noise e(t) is Gaussian distributed with mean $\mu = 0$ and standard deviation $\sigma = \sigma_e$. The energy fluence of A is then given by the equation

$$f(A) = \epsilon_0 c \Delta t \sum_{t_1}^{t_2} A(t_i)^2 = \epsilon_0 c \Delta t \sum_{t_1}^{t_2} \left[S(t_i) + e(t_i) \right]^2 = \epsilon_0 c \Delta t \sum_{t_1}^{t_2} \left[S(t_i)^2 + 2S(t_i)e(t_i) + e(t_i)^2 \right]$$
(5.16)

and the expectation value of f(A) is

$$\langle f(A) \rangle = \epsilon_0 c \Delta t \sum_{t_1}^{t_2} A(t_i)^2 = \epsilon_0 c \Delta t \sum_{t_1}^{t_2} \left[\langle S(t_i)^2 \rangle + 2 \langle S(t_i)e(t_i) \rangle + \langle e(t_i)^2 \rangle \right]$$

$$= \epsilon_0 c \Delta t \sum_{t_1}^{t_2} \left[\langle S(t_i) \rangle^2 + \underbrace{Var(S(t_i))}_{=0} + 2 \langle S(t_i) \rangle \underbrace{\langle e(t_i) \rangle}_{=0} \right]$$

$$+ 2 \underbrace{Cov(S(t_i), e(t_i))}_{=0} + \underbrace{\langle e(t_i) \rangle^2}_{=0} + \underbrace{Var(e(t_i))}_{\sigma_e^2} \right]$$

$$(5.17)$$

$$= \epsilon_0 c \Delta t \sum_{t_1}^{t_2} \left[\langle S(t_i) \rangle^2 + \sigma_e^2 \right] \, .$$

Hence, the best estimate of the energy fluence of the radio signal S is indeed

$$f(S) = \epsilon_0 c \Delta t \sum_{t_1}^{t_2} \left[A(t_i)^2 - \sigma_e^2 \right]$$
(5.18)

as defined in Eq. (5.8) where σ_e^2 is also calculated from the electric-field trace in a part where no signal is present. Following a similar calculation we can estimate the uncertainty of f(S) by computing $\sigma_f^2 = Var(f) = \langle f^2 \rangle - \langle f \rangle^2$. After several lines of calculation it follows that

$$\sigma_f^2 = 4f \,\epsilon_0 c \,\Delta t \,\sigma_e^2 + 2 \,(\epsilon_0 c)^2 \,(t_2 - t_1) \,\Delta t \,\sigma_e^4 \,. \tag{5.19}$$