Filtering and aliasing effects produced by time-discretisation in the simulation of Extensive Air Shower radio signals

Pengfei Zhang^a, Jiale Wang^a, Xin Xu^a, Fufu Yang^a, Chao Zhang^{b,c}, Sergio Cabana Freire^d and Matias Tueros^e

^aSchool of Electronic Engineering, Xidian University
^bDepartment of Astronomy, School of Physics, Peking University
^cSchool of Astronomy and Space Science, Nanjing University
^dInstituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela
^eInstituto de Física La Plata, CONICET-UNLP

June 11, 2024

Introduction: Modelling EM emission in simulations

- Particle trajectories subdivided in straight tracks
- Model: Infinite acceleration at the ends of the track
- Associated vector potential: Boxcar shape

Time binning

- Any implementation needs to sample the vector potential or electric field at a finite set of points
- Final pulse built by adding the contributions inside each time bin

• In ZHS, the sampled value is the average of **A** inside each time bin.

• We are sampling a convolution with a *unit* boxcar function (moving average)

ARENA 2024

Moving average & sinc filters

- Convolution in time domain \leftrightarrow Product in frequency domain
- Normalized boxcar of width $\Delta T \leftrightarrow \mathcal{F} \leftrightarrow \operatorname{sinc}(\pi \Delta T f)$
- We are secretly applying a sinc filter

Aliasing

• Reconstruct a signal up to a frequency $f \implies$ Sampling rate 2f

Aliasing

- Reconstruct a signal up to a frequency $f \implies$ Sampling rate 2f
- Only if the signal has no frequency content above f
- Otherwise, aliasing effects will appear

Aliasing

- Reconstruct a signal up to a frequency $f \implies$ Sampling rate 2f
- Only if the signal has no frequency content above f
- Otherwise, aliasing effects will appear
- But we are sampling signals with infinite frequency content!

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.0000$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.0500$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.1000$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.1500$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.2000$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.2500$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.3000$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.3500$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.4000$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.4500$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.5000$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.5500$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.6000$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.6500$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.7000$ ns

- Example: Antenna at the Cherenkov angle in a $heta=67^\circ$ shower.
- Pulse built using the ZHS algorithm
- Apply arbitrary shift relative to first time bin

Arbitrary delay $\delta T = 0.7500$ ns

LDF at a constant frequency

- Amplitude differences: Moving average filters
- Ripples: Phase differences between close antennas (usually unnoticed)

LDF at a constant frequency

- Amplitude differences: Moving average filters
- Ripples: Phase differences between close antennas (usually unnoticed)
- Important effect close to the Nyquist frequency

LDF: Maximum amplitude of electric field

- Amplitude differences: Moving average filters
- Ripples: Phase differences between close antennas (usually unnoticed)

LDF: Maximum amplitude of electric field

- Amplitude differences: Moving average filters
- Ripples: Phase differences between close antennas (usually unnoticed)
- Filtering the signal after simulation is not a solution for aliasing

- Current sampling algorithms are equivalent to moving-average filters
- Emission models are based in infinite-bandwidth vector potentials or electric fields
- Intrinsic distortions in the spectra appear due to aliasing
- Increased sampling rates and post-simulation processing are useful but do not solve the underlying problem.

- Current sampling algorithms are equivalent to moving-average filters
- Emission models are based in infinite-bandwidth vector potentials or electric fields
- Intrinsic distortions in the spectra appear due to aliasing
- Increased sampling rates and post-simulation processing are useful but do not solve the underlying problem.

Some ideas

- Adaptative sampling rates depending on the antenna
- Build pulses from finite-bandwidth contributions

• 40 boxcar functions with gaussian distributed amplitude, width and starting point.

• 40 boxcar functions with gaussian distributed amplitude, width and starting point.

 $\Delta T = 0.8$ ns. First sample at $t_0 = 0.08$ ns

• 40 boxcar functions with gaussian distributed amplitude, width and starting point.

 $\Delta T = 0.8$ ns. First sample at $t_0 = 0.24$ ns

• 40 boxcar functions with gaussian distributed amplitude, width and starting point.

 $\Delta T = 0.8$ ns. First sample at $t_0 = 0.40$ ns

• 40 boxcar functions with gaussian distributed amplitude, width and starting point.

• 40 boxcar functions with gaussian distributed amplitude, width and starting point.

Backup: Computing resources

- Increasing the sampling rate comes at a cost in CPU time and disk usage
- Close to the Cherenkov angle many tracks will always be narrower than the time bin

