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The Search for Ice

• (1994) Ice-detected in 
Mercury’s Permanently 
Shadowed Regions (PSRs)

• (2009) LCROSS mission detected 
~8% by weight of water in 
Cabeus crater ejecta plume
• Excavated ~6m

• (2016) LEND onboard LRO maps 
hydration of top meter in the 
PSRs

[18]
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Image credit: https://www.lpi.usra.edu/lunar/lunar-south-pole-atlas/



Predictions

• Cannon et al. (2020)
• Monte Carlo modeling of polar ice 

deposits
• Deposited via hydrated 

asteroids and volcanic 
outgassing

• Ejecta emplaced by age-dated 
large craters

• Estimates for ice loss
• Impact gardening

• There may be large near-pure ice 
deposits within these craters
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Figure source: Rubanenko et al. (2019)

Figure adapted 
from Cannon et al. 
(2020)
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Remote Sensing Detection Techniques

Initiate radar signals below the surface all 
over the moon

• Active Radar
• Roughness and volume scattering 

greatly reduce sensitivity
• Required high power transmitter

• Ground Penetrating Radar
• Viewing area is on order square meter
• Cannot easily be moved to gather 

statistics over a larger area



Cosmic-Ray Detection

• CR induces an Extensive Air Shower (EAS)
• Radio pulse emitted by EAS can be detected by Antenna
• Reflected CRs can be distinguished from direct by 

signal polarity

6 of 17Image credit: Remy Prechelt



7 of 17

ANITA Cosmic-Ray Directionality

• Cosmic-Rays seen by ANITA could reliably be identified as reflected and direct
• Their directionality could be determined

Hoover et al. PRL 105 (2010) 151101
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Analogously, 5 m – 10 m of regolith has roughly the same water equivalent of 
material as 20 km – 30 km of air 



Cosmic Ray Lunar Sounder (CoRaLS)

• CR showers initiated in 
regolith

• Detection of Askaryan 
effect emission

• Ice reflections possess 
polarity opposite of 
bedrock reflections
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Simulated Results

• Ice presence gives a 
strong reflection

• Time delay in reflections 
provide data on ice 
thickness

• Absence of ice you can 
still expect to receive an 
impulsive signal from 
bedrock reflections
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Instrument Concept

• Sensitivity to observables achieved with 
an ANITA-like array of wideband 
antennas

• Parameters
• Cover the area covered by PSRs
• Array of dual-polarized antennas

• 150 – 800 MHz with ≥ 9dBi of 
gain

• Trigger threshold SNR ≥ 4
• Pointing resolution ≤ 1°

• Current design has 8 antennas
• This can easily be scaled to more 

antennas to meet science goals



Events

• Entire lunar surface is being impacted by cosmic rays - only the fraction of 

cosmic rays that impact in PSRs are “science events”. 

• Total area of PSRs is 28,921 km2 distributed within 10 deg of each pole.

• Cosmic ray impacts outside of PSRs can be used for background 
estimation.

• CoRaLS should also detect ≥ 100,000 cosmic ray impacts in the lunar mare.

Orbit Altitude Orbital Area PSR Fraction Events in PSRs / 2 yr

20 km 5.7 ✕ 106 km2 5.0 ✕ 10-3 300 - 650

30 km 7.0 ✕ 106 km2 4.2 ✕ 10-3 300 - 600

50 km 8.9 ✕ 106 km2 3.2 ✕ 10-3 275 - 550 13 of 17
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Altitude Sensitivity

• Down to ~20 km the number of PSR 
events increase

• Setting a baseline of ~300 PSR events, 
requirement can be met with 8 
antennas

• Using 12 antennas increases PSR event 
rate by ≥45%
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• Using Current Design
• 8 antennas, ~9 dBi of 

gain
• 150 – 800 MHz band 

coverage
• Orbit at ~20 km
• Assuming Mercury-like 

ice
• Expect ≳300 PSR 

events to depths of 
20 m

• Depth of ice correlates 
to age of ice deposition

Expected PSR Event Rates
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Conclusions
• Regolith models predict large near-

pure ice deposits deep below the 
surface

• Previous missions didn’t have 
probing depth necessary to reach ice 
layers

• Remote sensing techniques offered 
inconclusive results

• Building off the Cosmic-Ray 
detection techniques in ANITA, 
CoRaLS offers a novel approach for 
studying subsurface lunar structure

• With an 8-antenna design with a 2-
year orbital mission would see 
enough cosmic ray events in the PSRs 
to help determine ice abundance
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THANK YOU



Motivation: The water cycle on airless bodies

● Favored mechanism: sudden & voluminous deposition of water ice.
○ Impact gardening prevents low-rate accumulation over time.

■ Prompt & voluminous sources exponentially more durable against gardening.

■ Gardening more efficient on the Moon than on Mercury.

○ Sources: water-rich asteroids or large-scale volcanic outgassing.

● The Moon could have relic 

(< 1 Gyr) ice deposits.
○ Current radar data does not 

penetrate below the first 

meter.

○ Buried ice, if it exists, may be 

between 1 – 10 m depth.

https://trailblazer.caltech.edu/news/lunarWaterCycle.html

References: Costello et al. 2020, JGR:Planets, 125(3), e2019JE006172; Needham & Kring 2017, EPSL, 478, 175-178; Cannon et al. 2020, GRL, 47(21), e2020GL088920;

https://trailblazer.caltech.edu/news/lunarWaterCycle.html


LCROSS

• Centaur rocket detaches 
from LRO with LCROSS 
instrument

• Rocket impacted the 
Cabeus crater ejecting 
debris

• Used Near-infrared 
absorbance to measure 
water in ejecta plume

• Measured ~155± 12kg 
water vapor/ice
• About 5.6±2.6% by 

mass
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Paige, D. et al. (2010). Diviner Lunar Radiometer Observations 
of Cold Traps in the Moon’s South Polar Region 
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Hydration Map from Neutron Detection
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