

Lunar Subsurface Ice Detection with Cosmic-Ray Showers

Payton Linton Ohio State Department of Physics

On behalf of the CoRaLS collaboration

ARENA June 12, 2024

CoRaLS Team

The Search for Ice

- (1994) Ice-detected in Mercury's Permanently Shadowed Regions (PSRs)
- (2009) LCROSS mission detected ~8% by weight of water in Cabeus crater ejecta plume
 - Excavated ~6m
- (2016) LEND onboard LRO maps hydration of top meter in the **PSRs**

180°E

Predictions

- Cannon et al. (2020)
 - Monte Carlo modeling of polar ice deposits
 - Deposited via hydrated asteroids and volcanic outgassing
 - Ejecta emplaced by age-dated large craters
 - Estimates for ice loss
 - Impact gardening
- There may be large near-pure ice deposits within these craters

Remote Sensing Detection Techniques

Initiate radar signals below the surface *all over* the moon

• Active Radar

- Roughness and volume scattering greatly reduce sensitivity
- Required high power transmitter
- Ground Penetrating Radar
 - Viewing area is on order square meter
 - Cannot easily be moved to gather statistics over a larger area

Cosmic-Ray Detection

- CR induces an Extensive Air Shower (EAS)
- Radio pulse emitted by EAS can be detected by Antenna
- Reflected CRs can be distinguished from direct by signal polarity

Image credit: Remy Prechelt

ANITA Cosmic-Ray Directionality

- Cosmic-Rays seen by ANITA could reliably be identified as reflected and direct
- Their directionality could be determined

Analogously, 5 m - 10 m of regolith has roughly the same water equivalent of material as 20 km - 30 km of air

Cosmic Ray Lunar Sounder (CoRaLS)

- CR showers initiated in regolith
- Detection of Askaryan effect emission
- Ice reflections possess polarity opposite of bedrock reflections

Simulated Results

- Ice presence gives a strong reflection
- Time delay in reflections provide data on ice thickness
- Absence of ice you can still expect to receive an impulsive signal from bedrock reflections

Instrument Concept

- Sensitivity to observables achieved with an ANITA-like array of wideband antennas
- Parameters
 - Cover the area covered by PSRs
 - Array of dual-polarized antennas
 - 150 800 MHz with ≥ 9dBi of gain
 - Trigger threshold SNR ≥ 4
 - Pointing resolution $\leq 1^{\circ}$
- Current design has 8 antennas
 - This can easily be scaled to more antennas to meet science goals

Events

 R_M

13 of 17

- <u>Entire lunar surface</u> is being impacted by cosmic rays only the fraction of cosmic rays that impact in PSRs are "science events".
- Total area of PSRs is 28,921 km² distributed within 10 deg of each pole.
- Cosmic ray impacts outside of PSRs can be used for background estimation.
- CoRaLS should also detect \geq 100,000 cosmic ray impacts in the lunar mare.

Orbit Altitude	Orbital Area	PSR Fraction	Events in PSRs / 2 yr
20 km	5.7 X 10 ⁶ km ²	5.0 × 10 ⁻³	300 - 650
30 km	7.0 X 10 ⁶ km ²	4.2 × 10 ⁻³	300 - 600
50 km	8.9 X 10 ⁶ km ²	3.2×10^{-3}	275 - 550

Altitude Sensitivity

- Down to ~20 km the number of PSR events increase
- Setting a baseline of ~300 PSR events, requirement can be met with 8 antennas
- Using 12 antennas increases PSR event rate by ≥45%

Expected PSR Event Rates

- Using Current Design
 - 8 antennas, ~9 dBi of gain
 - 150 800 MHz band coverage
 - Orbit at ~20 km
 - Assuming Mercury-like ice
 - Expect ≥300 PSR events to depths of 20 m
 - Depth of ice correlates to age of ice deposition

Conclusions

- Regolith models predict large nearpure ice deposits deep below the surface
- Previous missions didn't have probing depth necessary to reach ice layers
- Remote sensing techniques offered inconclusive results
- Building off the Cosmic-Ray detection techniques in ANITA, CoRaLS offers a novel approach for studying subsurface lunar structure
- With an 8-antenna design with a 2year orbital mission would see enough cosmic ray events in the PSRs to help determine ice abundance

THE OHIO STATE UNIVERSITY

THANK YOU

Mānoa

Motivation: The water cycle on airless bodies

- Favored mechanism: sudden & voluminous deposition of water ice.
 - Impact gardening prevents low-rate accumulation over time.
 - Prompt & voluminous sources exponentially more durable against gardening.
 - Gardening more efficient on the Moon than on Mercury.
 - Sources: water-rich asteroids or large-scale volcanic outgassing.

- The Moon <u>could have relic</u> (< 1 Gyr) ice deposits.
 - Current radar data does not penetrate <u>below the first</u> <u>meter</u>.
 - <u>Buried ice</u>, if it exists, may be
 between 1 10 m depth.

https://trailblazer.caltech.edu/news/lunarWaterCycle.html

References: Costello et al. 2020, JGR: Planets, 125(3), e2019JE006172; Needham & Kring 2017, EPSL, 478, 175-178; Cannon et al. 2020, GRL, 47(21), e2020GL088920;

LCROSS

- Centaur rocket detaches from LRO with LCROSS instrument
- Rocket impacted the Cabeus crater ejecting debris
- Used Near-infrared absorbance to measure water in ejecta plume
- Measured ~155± 12kg water vapor/ice
 - About 5.6±2.6% by mass

Paige, D. et al. (2010). Diviner Lunar Radiometer Observations of Cold Traps in the Moon's South Polar Region

Hydration Map from Neutron Detection

