Radio signatures of cosmic-ray showers with deep in-ice antennas

Simon Chiche

Nicolas Moller, Abby Bishop, Krijn de Vries, Simon de Kockere, Simona Toscano, Uzair Latif ULB VUB

In-ice radio detection of neutrinos

Simon Chiche (IIHE)

ARA (South Pole)

RNO-G (Greenland)

In-ice radio detection: promising technique to detect the first EeV neutrinos

Radio emission of cosmic-ray air showers can also reach the deep antennas

Radio emission of cosmic-ray air showers can also reach the deep antennas

Radio emission of cosmic-ray air showers can also reach the deep antennas

The cosmic-ray flux should be much larger than the neutrino flux:

Radio emission of cosmic-ray air showers can also reach the deep antennas

The cosmic-ray flux should be much larger than the neutrino flux:

- Cosmic-ray detection would validate in-ice radio detection principle
- · Cosmic-ray/neutrino discrimination is needed to ensure successful neutrino detection

Radio emission from air showers

2 main sources for the radio emission

In-air cascade: Geomagnetic + Askaryan

In-ice cascade: Askaryan only

Polarisation results from the coherent sum between both emissions

How to simulate both the in-air and in-ice emission from cosmic-ray showers?

FAERIE: Combination of CORSIKA and Geant Monte-Carlo codes (De Kockere et al., 2024 [2403.15358])

In air

- Particle cascade with CORSIKA 7.7500
- Radio emission with CoREAS

In ice		
•	Particle cascade with Geant4 10.5	
•	Radio emission with code from the T-510 experiment (radio detection in dense medium	

(Belov et al., 2015 [1507.07296])

How to simulate both the in-air and in-ice emission from cosmic-ray showers?

In air	In ice
Particle cascade with CORSIKA 7.7500	Particle cascade with Geant4 10.5
 Radio emission with CoREAS 	Radio emission with code from the T-510 experiment (radio detection in dense medium) (Belov et al., 2015 [1507.07296])

In both cases radio emission computed using
$$\mathbf{E}_{\vec{E}\pm}(\vec{x},t) = \pm \frac{1}{\Delta t} \frac{q}{c} \left(\frac{\hat{r} \times [\hat{r} \times \vec{\beta}^*]}{|1 - n\vec{\beta}^* \cdot \hat{r}|R} \right)$$

$$ec{E}_{\pm}(ec{x},t) = \pm rac{1}{\Delta t} rac{q}{c} \left(rac{\hat{r} imes [\hat{r} imes ec{eta}^*]}{|1 - nec{eta}^* \cdot \hat{r}|R}
ight)$$

How to simulate both the in-air and in-ice emission from cosmic-ray showers?

In air	In ice
Particle cascade with CORSIKA 7.7500	Particle cascade with Geant4 10.5
 Radio emission with CoREAS 	Radio emission with code from the T-510 experiment (radio detection in dense medium) (Belov et al., 2015 [1507.07296])

In both cases radio emission computed using $\mathbf{E}_{\vec{E}_{\pm}}(\vec{x},t) = \pm \frac{1}{\Delta t} \frac{q}{c} \left(\frac{\hat{r} \times [\hat{r} \times \vec{\beta}^*]}{|1 - n\vec{\beta}^* \cdot \hat{r}|R} \right)$

$$\vec{E}_{\pm}(\vec{x},t) = \pm \frac{1}{\Delta t} \frac{q}{c} \left(\frac{\hat{r} \times [\hat{r} \times \vec{\beta}^*]}{|1 - n\vec{\beta}^* \cdot \hat{r}|R} \right) \qquad \stackrel{\beta^*}{\longrightarrow} \frac{\hat{r}}{\hat{r}} \qquad R$$

7+

Endpoint formalism must be modified with ray-tracing to account for the varying refractive index in ice

+

See talk from Dieder

Ray-tracing

Modified Endpoint formalism due to ray-bending in ice

Ray-tracing

See talk from Dieder

Ice refractive index can be modeled using an exponential profile

ARA: 12 depths [145-200] m

RNO-G: 5 depths [0, 40, 60, 80,100] m

Core position

Where to set the antenna positions?

We use ray-tracing so that the « ice-core ray » intersects the center of the layer at |z| = 100 m

Simulation results

Cubic simulation of a given proton-induced shower at South Pole

Fluence maps

In-air emission

Air + Ice

Dependency of the emission with the depth

Depth = 40 m

Dependency of the emission with the depth

Depth = 40 m

Vertical shower ($\theta = 0^{\circ}$ **):** signifiant in-ice emission

Vertical shower ($\theta = 0^\circ$): signifiant in-ice emission

Inclined shower ($\theta = 50^{\circ}$ **):** dominant in-air emission

Cosmic-ray signatures

Surface antennas and polarization

Surface antennas: first proxy for cosmic-ray identification and veto

Polarisation: direction of the electric field vector

- Bean-shaped fluence pattern (Geomagnetic/Askaryan interferences)
- Linear and ~unidirectional polarization (dominant geomagnetic emission)

The emission from both the in-air and in-ice cascades can sometimes reach the same antennas

Valuable signatures for cosmic-ray identification!

We can draw a cosmic-ray event rate from simulations

Strategy:

- Run a library of simulations (E, θ, φ)
- Apply scaling factors to interpolate between events
 - Generate random events
 - Detector response and trigger (AraSim/NuRadioMC)
 - Derive the event rate

We can simulate in-ice radio emission from cosmic-ray showers!

Objectives:

- Cosmic-ray event rate for in-ice detectors like ARA and RNO-G
- Identification of cosmic-ray signatures (polarization, fluence pattern, timing...)
- Cosmic-ray/neutrino discrimination

Backup

Simon Chiche (IIHE)

FAQ:

Simulations size?: A few gigabytes at $10^{17} \, eV$

Computation time?:

• In-air emission: $\sim 5 - 10 \text{ h} \times \frac{N_{\text{ant}}}{10 \text{ ant}} \times \frac{\cos(\theta = 0^{\circ})}{\cos(\theta)} \times \frac{E}{10^{16.5} \text{ eV}} \text{ on 1 node}$ • In-ice emission: $\sim 5 \text{ h} \times \frac{N_{\text{ant}}}{120 \text{ ant}} \times \frac{\cos \theta}{\cos(\theta = 0^{\circ})} \text{ on } 20 \times \frac{E}{10^{17} \text{ eV}} \text{ nodes}$