

Electric Field Reconstruction with Information Field Theory

Simon Strähnz, Tim Huege, Philipp Frank and Torsten Enßlin

Information Field Theory – In Practice

- Define Measurement Process
- Define Field model
 - Set adequate priors
- Define Noise
- →IFT model ready for variational inference

Information Field Theory: Metric Gaussian Variational Inference

- Bayes Theorem: $P(\theta|d) = \frac{P(d|\theta)P(\theta)}{P(d)}$
- Variational Inference:
 - Approximate posterior with known distribution
- Iteratively:
 - Draw samples
 - Approximate covariance
 - Minimize distance between distributions

Samples from Posterior

"Classical" reconstruction

- Preprocessing (ADC \rightarrow V)
- Reconstruction of electric field
 Assume far field: E_r = 0

• Solve:
$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix}(f) = \begin{pmatrix} H_{\theta}^1 & H_{\varphi}^1 \\ H_{\theta}^2 & H_{\varphi}^2 \end{pmatrix}_f \begin{pmatrix} E_{\theta} \\ E_{\varphi} \end{pmatrix}(f)$$

- Calculate energy fluence
 - $\Phi_{\text{signal}} = \Phi_{\text{pulse}} \Phi_{\text{noise}}$
- Energy / directional analysis are separate

The Problem

6 June 12, 2024 Simon Strähnz - Electric Field Reconstruction with Information Field Theory

Institute for Experimental Particle Physics Institute for Astroparticle Physics

Forward Model

E-Field Model

Previous work from Welling et al. (JCAP, 2021)

Far field approximation Split into geomagnetic, charge excess and RFI $\vec{E}(f) = (\mathcal{E}_{geo}(f)\cos\psi_{geo} + \mathcal{E}_{CE}(f)\cos\psi_{CE} + R_{\theta})\hat{\theta} + (\mathcal{E}_{geo}(f)\sin\psi_{geo} + \mathcal{E}_{CE}(f)\sin\psi_{CE} + R_{\phi})\hat{\phi}$

Split into amplitude and phase

$$\mathcal{E}(f) = |\mathcal{E}|(f)e^{i\phi(f)}$$

Signal Model

75

Noise Model

Narrowband RFI

- Part of the "signal" model
- Modelled separately per antenna polarisation
- $\blacksquare R_{\theta,\varphi} = \Gamma^{-1}(\alpha, s, \xi_{\theta,\varphi}) \cdot e^{i\phi_{RFI,\theta,\varphi}}$

Measurement noise/Broadband RFI

 $n \leftrightarrow \mathcal{G}(0, \Sigma_{V, \text{meas}})$ $\Sigma_{V, \text{meas}} = \text{diag}(s_{V, \text{meas}})$

Measurement Model

- Fourier transform
- Measurement equation

Likelihood

$$\vec{V}(f) = \widetilde{H}(f) \circ \vec{E}(f)$$

 $\vec{V}(t) = \operatorname{RFFT}^{-1}(\vec{V}(f))$

$$d_i = \vec{V}\left(\vec{E}(t_i)\right) + n_i$$

$$P(\vec{d}_i | \vec{E}) = \mathcal{G}(\vec{d}_i - \vec{V}, s_n)$$

Karlsruhe Institute of Technology

Simulations

- Library of CoREAS simulations
- Primaries: Proton, Helium, Nitrogen, Iron
 Energy: 10^{18.4}eV 10^{20.1}eV
 Zenith angle: 65° 85°
- IFT Reconstruction: ≈ 800 showers
 Standard Reconstruction: 4000 showers

Detector simulation for Pierre Auger Observatory
 Measured noise

Reconstruction Example *E-Field: Standard*

Reconstruction Example *E-Field: IFT*

Reconstruction Example *E-Field: IFT*

Reconstruction Example *Voltage: IFT*

χ^2 -distribution improvements

IFT Reconstruction

Standard reconstruction

IFT Reconstruction

17 June 12, 2024 Simon Strähnz - Electric Field Reconstruction with Information Field Theory

Fluence comparison: Single Events

IFT Reconstruction 3×10^{2} 3×10^{2} 2×10^{2} - 10³ Energy fluence Φ_{E}^{STD} (eV/m²) $_{o}^{\text{ol}}$ $(RMS)^2$ max/RMS)² = (E_{ma} SNR (= (E)... NS ² 6 × 10 - 10² 4×10^{2} 6×10^{1} 6×10^{1} 3×10^{2} $\frac{\Phi_E^{\text{IFT}} - \Phi_E^{\text{MC}}}{\Phi_E^{\text{MC}}}$ $\frac{\Phi_E^{STD} - \Phi_E^{MC}}{\Phi_E^{MC}}$ C -1 3×10^{2} 6×10^{1} 2×10^{2} 10² 10^{2} Energy fluence Φ_F^{MC} (eV/m²) Energy fluence Φ_E^{MC} (eV/m²)

Standard reconstruction

18 June 12, 2024 Simon Strähnz - Electric Field Reconstruction with Information Field Theory

Fluence comparison: Single Events **IFT Reconstruction** Standard reconstruction Not reconstructable · 10³ Energy fluence Φ_{E}^{IFT} (eV/m²) $_{c}^{}$ $= (E_{\max}/RMS)^2)$ SNR (: 10^{2} 1 $\Phi_E^{|FT} - \Phi_E^{MC}$ Φ_E^{MC} 0 . -110² Energy fluence Φ_F^{MC} (eV/m²)

Karlsruhe Institute of Technology

Fluence comparison: Single Events

IFT Reconstruction

Standard reconstruction

Not reconstructable

Fluence comparison: All Data

SNR – Bias comparison

IFT Reconstruction

22

Standard reconstruction

Summary

- First physics-based model for IFT reconstruction of E-Field
- Has been successfully tested on MC simulations
- Improved E-Field reconstruction
 - Better χ^2 distribution
 - (Slightly) less biased fluence calculation
- No direct improvement to current reconstruction

Computation-heavy

Outlook

Improved noise model

Reconstruct all stations at once

- E-Field model as shown
- Add model for LDF
 - Amplitude
 - Pulse shape
- Add data from other detectors
 Surface array (WCD and scintillators)

