Improving the photon sensitivity of the Pierre Auger Observatory with the AugerPrime Radio Detector

Jannis Pawlowsky on behalf of the Pierre Auger Collaboration

13 June 2024

BERGISCHE UNIVERSITÄT WUPPERTAL

Neccessity of a radio trigger at Auger

Inclined photon air showers

- Muon content too low for particle triggers
- Electromagnetic particles absorbed in the atmosphere
- Atmosphere (almost) transparent for radio emission in the 30-80 MHz range

Neccessity of a radio trigger at Auger

Inclined photon air showers

- Muon content too low for particle triggers
- Electromagnetic particles absorbed in the atmosphere
- Atmosphere (almost) transparent for radio emission in the 30-80 MHz range

Neccessity of a radio trigger at Auger

Inclined photon air showers

- Muon content too low for particle triggers
- Electromagnetic particles absorbed in the atmosphere
- Atmosphere (almost) transparent for radio emission in the 30-80 MHz range

Benefit of radio detection of inclined photons

High discrimination power anticipated:

- Trigger high-energy showers without particle signal
- Clear indication for neutral primary

Direct access to photon energy:

- 98 % of energy feeds the electromagnetic component
- Particle detectors underestimate energy

Deepness of shower:

Vertical photons often with maximum below ground

Designed trigger

Classic threshold trigger with added vetoing mechanism

Designed trigger

Trigger threshold T_H Veto parameter: T_L, shift, window length, max. count

Classic threshold trigger with added vetoing mechanism

Count how many times a second threshold after the signal is exceeded

Improving the photon sensitivity of the Pierre Auger Observatory with the AugerPrime Radio Detector Jannis Pawlowsky | 13 June 2024

3

Designed trigger

Trigger threshold T_H Veto parameter: T_L, shift, window length, max. count

Classic threshold trigger with added vetoing mechanism

Count how many times a second threshold after the signal is exceeded

Second threshold too often exceeded - vetoed

Simulation studies:

Treat radio trigger equivalent to existing particle triggers

Increasing zenith angle

Increasing relative gain due to radio trigger

In sum: up to x4 times more aperture at low energies

Sky coverage

Not only gain in aperture, but also sky coverage increases

Improving the photon sensitivity of the Pierre Auger Observatory with the AugerPrime Radio Detector Jannis Pawlowsky | 13 June 2024

5

Simulated photon event

Simulated photon events:

Events with

- Large footprint
- Large station signals
- High reconstruction probability
- Not read-out without radio trigger

Is the implementation (radio trigger equivalent to existing particle triggers) feasible?

(20 year old system,1200 bits/s station bandwidth)

Is the implementation (radio trigger equivalent to existing particle triggers) feasible?

Bandwidth limitation

Noise situation

(20 year old system,1200 bits/s station bandwidth)

~43 days to download all 3 LOTR movies

Is the implementation (radio trigger equivalent to existing particle triggers) feasible?

Noise situation

(20 year old system,1200 bits/s station bandwidth)

Allowed radio rates:

Average station trigger rate: < 1 Hz

Read-out rate: ~1-2 / station / day ~ 10⁻⁵ Hz

No burst of triggers/read-outs allowed

Improving the photon sensitivity of the Pierre Auger Observatory with the AugerPrime Radio Detector Jannis Pawlowsky | 13 June 2024

Is the implementation (radio trigger equivalent to existing particle triggers) feasible?

Noise situation

(20 year old system,1200 bits/s station bandwidth)

Allowed radio rates:

Average station trigger rate: < 1 Hz

Read-out rate: ~1-2 / station / day ~ 10⁻⁵ Hz

No burst of triggers/read-outs allowed

Limit station rate to 2 Hz Read-out then also acceptable?

Improving the photon sensitivity of the Pierre Auger Observatory with the AugerPrime Radio Detector Jannis Pawlowsky | 13 June 2024

Is the implementation (radio trigger equivalent to existing particle triggers) feasible?

No burst of triggers/read-outs allowed

Limit station rate to 2 Hz Read-out then also acceptable?

Field test

Test implementation with two stations

No "pure" radio read-outs, at least 3 stations required for read-out

Goals:

- Prove trigger is working
- Show read-out rate is acceptable

8

Trigger working?

Triggers are read-out in case of (random) coincidence with particle trigger of third station

Improving the photon sensitivity of the Pierre Auger Observatory with the AugerPrime Radio Detector Jannis Pawlowsky | 13 June 2024

Read-out rate acceptable?

Tested different settings of trigger (I-IV)

Analyse coincidence of radio triggers. Assume: signals reach third station (read-out)

Up to now: no suitable setting found to be compatible with strict bandwidth limitations

Read-out rate acceptable?

Tested different settings of trigger (I-IV)

Analyse coincidence of radio triggers. Assume: signals reach third station (read-out)

Up to now: no suitable setting found to be compatible with strict bandwidth limitations

Change triggering algorithm:

Change triggering algorithm

More advanced trigger designs suitable?

Change triggering algorithm

• More advanced trigger designs suitable?

Request particle triggers for read-out

- Good at limiting noise read-outs (no correlation of radio and particle noise)
- Reduces trigger efficiency

Intermediate solution?

Change triggering algorithm

More advanced trigger designs suitable?

Request particle triggers for read-out

- Good at limiting noise read-outs (no correlation of radio and particle noise)
- Reduces trigger efficiency

Reject pure radio events from horizon

 Radio noise mostly from horizon Horizon read-outs mostly noise

Change triggering algorithm

More advanced trigger designs suitable?

Request particle triggers for read-out

- Good at limiting noise read-outs (no correlation of radio and particle noise)
- Reduces trigger efficiency

Reject pure radio events from horizon

 Radio noise mostly from horizon Horizon read-outs mostly noise

Summary

- Radio trigger designed, tested and validated
- Simulations: significant improvement in photon trigger efficiency for ideal scenario
- Field test shows proof of princple, but work still to be done
- Limitation due to bandwidth: optimal and feasible implementation under discussion

Simulations: EM fraction

Simulations: Shower depth

Simulations: Trigger efficiency for protons

Field test: Dead-time due to limiting trigger rate

UTC Time

Up-time very noise dependent. Between 50 % and 80 % at one of the worst position in the array

Field test: Conversion rate of triggers

UTC Time

Conversion from station trigger to read-out ~ 10,000 times higher for radio than for particle triggers

Noise data: Mono-frequent noise

Noise data: Effect of lightning

Vegetta, 15-16/03/2023

Noise data: read-out via USB-stick with 100 Hz, by chance during lightning

Improving the photon sensitivity of the Pierre Auger Observatory with the AugerPrime Radio Detector Jannis Pawlowsky | 13 June 2024

Noise data: Lightning trace

Lightning traces hard to discriminate with simple algorithms

