

Highlights from AERA: X_{max} from the shower footprint and interferometry

Bjarni Pont For the Pierre Auger Collaboration

Postdoc Radboud University (NL)

In this talk

- Goal: Measure cosmic-ray mass composition (p, He, ..., Fe, ...)
- Motivation: Mass composition <-> sources of cosmic rays at transition between Galactic and extra Galactic (~10¹⁷⁻¹⁸eV)

Contents:

- X_{max} from the radio footprint (LDF): FD-AERA comparison, X_{max} resolution, X_{max} distributions <u>Phys. Rev. Lett. 132, 021001 (2024)</u>: Demonstrating compatibility Fluorescence and Radio X_{max} <u>Phys. Rev. D 109, 022002 (2024)</u>: Method and detailed results of AERA X_{max}
- X_{max} from the 3d emission region (interferometry): Interferometric reconstruction, LDF-interferometry comparison, prospects for inclined showers

Radboud University Introduction: AERA at the Pierre Auger Observatory

Auger Engineering Radio Array

- 153 autonomous radio antennas
- Energy range: 10¹⁷-10¹⁹ eV
- Frequency range: 30-80 MHz
- >2000 high quality events over 7 years (with ≥5 stations at 'SNR'>10).
- Beacon for nanosecond timing calibration.

Radboud University PIERRE AUGER AU

Build upon simulation-template fitting method [Buitink+2016]

- From 7yr of data:
 - ~600 high-quality showers after anti-bias and reconstruction cuts (E=10^{17.5} to 10^{18.8} eV)
 - 53 hybrid showers with independent FD and AERA reconstructions
- 15 proton +12 iron Corsika/CoREAS simulation for each air shower
 - -> likelihood analysis: template fitting to find X_{max} for each shower

Using the ~600 x (15 p +12 Fe) set of simulations

- Correct for reconstruction bias on an event-by-event basis
- Determine reconstruction uncertainty on an event-by-event basis
- Determine detection acceptance
- Determine reconstruction bias

Investigation of systematic uncertainties. Accounting for:

- Basic effects : hadronic model in CORSIKA, GDAS atmosphere, Auger SD energy scale
- Method specific effects : data selection (acceptance), X_{max} reconstruction pipeline
- **Residual bias checks** : investigation of *shower zenith/azimuth/core/... vs <X_{max}>(E)*

Auger has unique Radio-Fluorescence setup:

- X_{max} of **53** hybrid-showers with AERA and FD (Are independent observations!)
- No significant bias radio X_{max} w.r.t. fluorescence X_{max}.
- Provides independent checks on:
 - X_{max} reconstruction methods
 - shower physics (probe different aspects)

- Distributions of reconstructed AERA X_{max} in 6 energy bins
- vs Auger-mix, drawn with AERA {i.e., incl. resolution, acceptance, and reconstruction bias}.

AD test statistic checks if measured distribution could have been drawn from Auger-mix with detector effects.

- Compatible with Auger-mix for each energy bin (within stat+syst unc)
- Validation (1) that we understand our procedure and (2) of compatibility FD and AERA.

Radboud University Results: Measured AERA Xmax moments

- ~600 showers after quality and anti-bias cuts.
- In agreement with Auger FD in mean, width, and the X_{max} distribution.
- Light composition (p-He?) at E=10^{17.5} eV, seemingly becoming lighter towards E=10^{18.5} eV.

Preliminary: X_{max} from Interferometry

2

Method at ICRC2023

Reconstruction of an air shower

[Work by Harm Schoorlemmer]

Radboud University Preliminary: 1:1 comparison to footprint method

- Starting from the same AERA X_{max} simulation library (PRL/PRD papers) (high quality events: N_{stations}≥10, ns-beacon timing, Z<55°, E>10¹⁸ eV, σX_{max} <30g/cm²)
- Generally good agreement. Examples below. Works well at both low and high Xmax. •
- Station multiplicity & geometry governs the resolution (spread of points) ullet
 - -> still needs proper error estimation on fit (for now simple fit uncertainty)

Outlook:

PIERRE AUGER

- Understanding performance of the algorithm
- Quality/reconstruction cuts.
- Extra simulation set for interpretation
- Paper on X_{rit} with AERA data in preparation

[Work by Harm Schoorlemmer]

Bonus slide: using a beacon signal to get antenna alignment

192

194

190

186

188

Azimuth angle [deg]

184

270°

225

188

186

Azimuth angle [deg]

184

For more detail see PhD Thesis

Backup

Radboud University Method: Reconstructing Xmax from the radio footprint

Radboud University Method: Reconstructing X_{max} from the radio footprint

+ Magnetic field model at time of data

Radboud University Method: Reconstructing X_{max} from the radio footprint

Radboud University Method: Reconstructing X_{max} from the radio footprint

 <u>Step 2</u> — bias correction per event: Also, reconstruct X_{max} for each simulation with *Leave-one-out cross validation*.

 Compare {Parabola vs MC} values of 27 simulations: Allows to correct for bias & estimate σX_{max}; (KDE modelled)

 <u>Step 2</u> — bias correction per event: Also, reconstruct X_{max} for each simulation with *Leave-one-out cross validation*.

Compare {Parabola vs MC} values of 27 simulations: Allows to correct for bias & estimate σX_{max}; (KDE modelled)

Some other examples

- Using reconstruction of X_{max} for our simulations we can calculate the bias when we assume the range of
 possible underlying compositions.
- Similarly, we can try to reconstruct all our simulations and see what fraction would be seen (acceptance) and what the effect is on the X_{max} distribution.

Systematic uncertainties on the Xmax **distribution**

• Basic effects

•

: hadronic model in CORSIKA, GDAS atmosphere, Auger SD energy scale

- Method specific effects : data selection (acceptance), X_{max} reconstruction
- Cross-checks

: residual bias checks with Zen/Az/core/... vs <X_{max}> and E