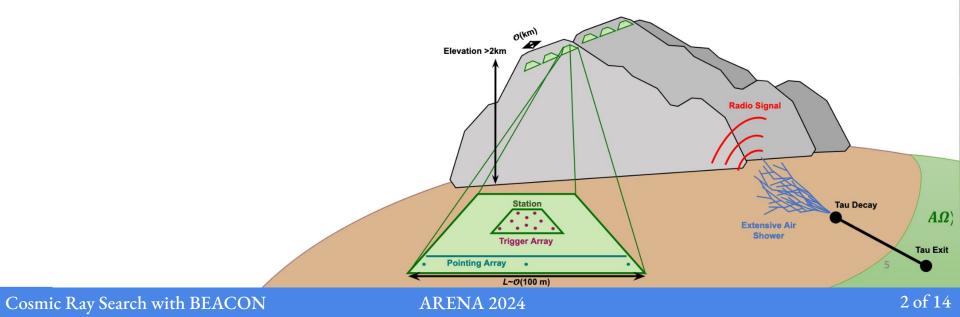
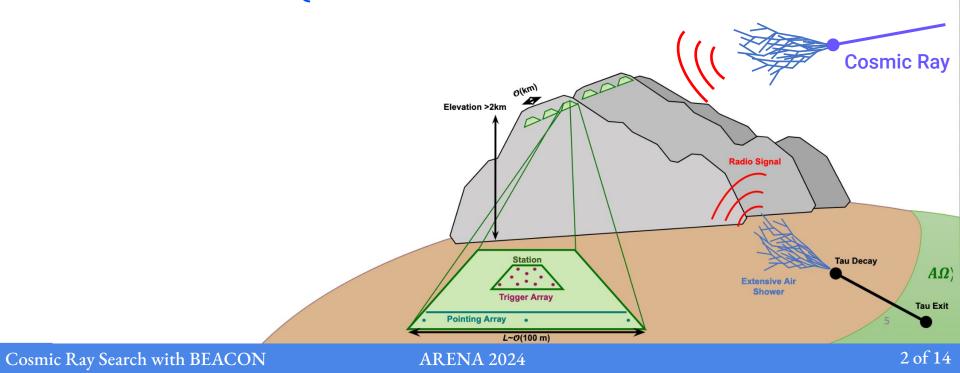
Searching for Cosmic Rays with the BEACON Prototype

Zachary Martin On Behalf of the BEACON Collaboration



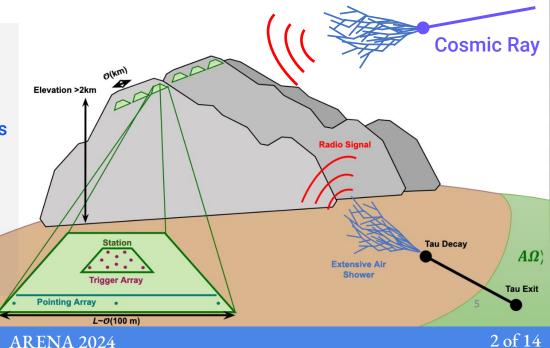
Overview

BEACON Prototype $\begin{cases} Goal \rightarrow Validate full instrument neutrino sensitivity \end{cases}$



Overview

BEACON Prototype $\begin{cases} Goal \rightarrow Validate full instrument neutrino sensitivity \\ How \rightarrow Verify cosmic ray (CR) air shower radio flux \end{cases}$



Overview

BEACON Prototype $\begin{cases} Goal \rightarrow Validate full instrument neutrino sensitivity \\ How \rightarrow Verify cosmic ray (CR) air shower radio flux \end{cases}$

Presenting

- 2021 prototype CR search demonstrates capabilities to trigger on impulsive events (D. Southall)
- RF-only CR search improvements in progress (A. Zeolla)
- 2023 upgrades introduced independent scintillator array
- Coincident scintillator and RF CR search in progress to optimize RF-only trigger+search

Cosmic Ray Search with BEACON

BEACON 2021 Prototype

What are we working with?

BEACON 2021 Prototype

What are we working with?

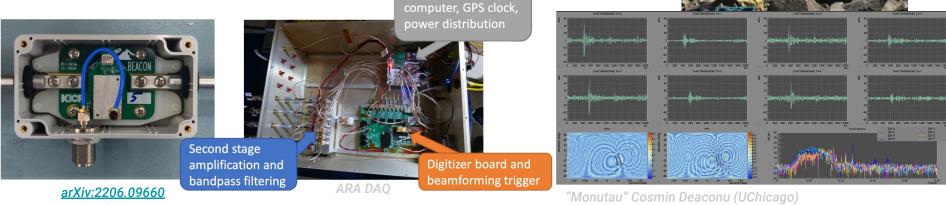
- 2.4 km prominence at White Mountain Research Station, CA
- Array of 4 Cross-Polarized Dipole Antennas (@ 30 80 MHz)

"Monutau" Cosmin Deaconu (UChicago)

Cosmic Ray Search with BEACON

BEACON 2021 Prototype

What are we working with?


- 2.4 km prominence at White Mountain Research Station, CA

- Array of 4 Cross-Polarized Dipole Antennas (@ 30 80 MHz)
- Phased array RF triggers (Power+Direction thresholds)

 \rightarrow CR search with RF only

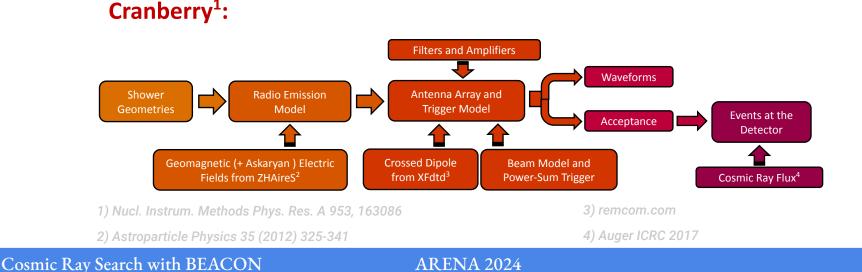
(+Forced clock triggers for backgrounds)

Single board

Cosmic Ray Search with BEACON

RF Events & Simulation

What do we expect?

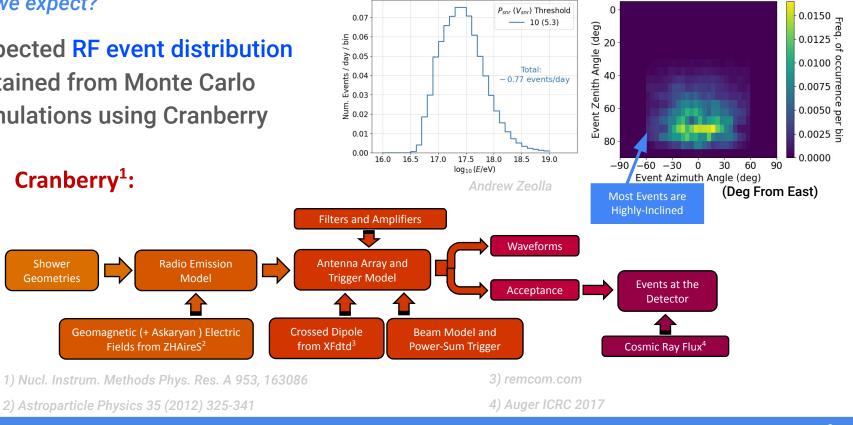


4 of 14

BEACON

RF Events & Simulation *What do we expect?*

Expected **RF event distribution** obtained from Monte Carlo simulations using Cranberry



RF Events & Simulation

What do we expect?

Expected RF event distribution obtained from Monte Carlo simulations using Cranberry

Expected CR Distributions from Simulation

Cosmic Ray Search with BEACON

Shower

Impulsive Events Search What was found?

Impulsive Events Search What was found?

112 days of data (expecting ~80 CR)

		y ,	Fraction Cut if Applied First
Cut Name	Number of Events Remaining	Fraction Cut Sequentially	
Elevation	1,830,144	0.98	0.98
Azimuth	1,145,593	0.37	0.0075
Time Delay Clustering, HPol	1,116,064	0.026	0.95
Time Delay Clustering, VPol	1,104,002	0.011	0.85
Peak-to-Sidelobe Ratio	201,926	0.82	0.065
Impulsivity	57,669	0.71	0.029
Cosmic Ray Template Correlation	42,184	0.27	0.028
Associated with Below-Horizon Sources	38,274	0.93	0.79
Signal Amplitude Differences	15,809	0.59	0.0038
Combined Normalized Map Peak Value	7,894	0.50	0.23
Combined Peak-to-Peak/(2 * Standard Deviation)	5,440	0.31	0.044
Hand-inspection breakdown of the 5,440 passing events:		Number of Events	Fraction of Events
Likely mis-reconstructions from below the horizon		4,081	0.75
and Events with unstable amplifiers			
Events associated with airplanes		1,323	0.24
Remaining above-horizon events		36	0.0066

Dan Southall (UChicago)

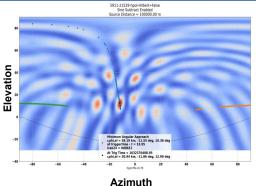


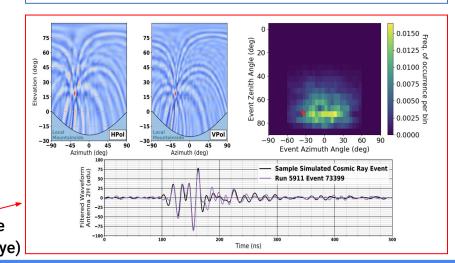
Impulsive Events Search

112 days of data (expecting ~80 CR)

Cut Name	Number of Events Remaining	Fraction Cut Sequentially	Fraction Cut if Applied First
Elevation	1,830,144	0.98	0.98
Azimuth	1,145,593	0.37	0.0075
Time Delay Clustering, HPol	1,116,064	0.026	0.95
Time Delay Clustering, VPol	1,104,002	0.011	0.85
Peak-to-Sidelobe Ratio	201,926	0.82	0.065
Impulsivity	57,669	0.71	0.029
Cosmic Ray Template Correlation	42,184	0.27	0.028
Associated with Below-Horizon Sources	38,274	0.93	0.79
Signal Amplitude Differences	15,809	0.59	0.0038
Combined Normalized Map Peak Value	7,894	0.50	0.23
Combined Peak-to-Peak/(2 * Standard Deviation)	5,440	0.31	0.044
Hand-inspection breakdown of the 5,440 passing events:		Number of Events	Fraction of Events
Likely mis-reconstructions from below the horizon and Events with unstable amplifiers		4,081	0.75
Events associated with airplanes		1,323	0.24
Remaining above-horizon events		36	0.0066

Airplane tracking data obtained from: Bringing up OpenSky: A large-scale ADS-B sensor network for research Matthias Schäfer, Martin Strohmeier, Vincent Lenders, Ivan Martinovic, Matthias Wilhelm ACM/IEEE International Conference on Information Processing in Sensor Networks, April 2014


Dan Southall (UChicago)


Impulsive Events Search

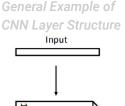
112 days of data (expecting ~80 CR)

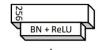
Cut Name	Number of Events	Fraction Cut	Fraction Cut	
	Remaining	Sequentially	if Applied First	
Full Data Set	96,483,288			
Elevation	1,830,144	0.98	0.98	
Azimuth	1,145,593	0.37	0.0075	
Time Delay Clustering, HPol	1,116,064	0.026	0.95	
Time Delay Clustering, VPol	1,104,002	0.011	0.85	
Peak-to-Sidelobe Ratio	201,926	0.82	0.065	
Impulsivity	57,669	0.71	0.029	
Cosmic Ray Template Correlation	42,184	0.27	0.028	
Associated with Below-Horizon Sources	38,274	0.93	0.79	
Signal Amplitude Differences	15,809	0.59	0.0038	
Combined Normalized Map Peak Value	7,894	0.50	0.23	
Combined Peak-to-Peak/(2 * Standard Deviation)	5,440	0.31	0.044	
Hand-inspection breakdown of the 5,440 passing eve	ents:	Number of Events	Fraction of Events	
Likely mis-reconstructions from below the horizon		4,081	0.75	
and Events with unstable amplifiers				
Events associated with airplanes		1,323	0.24	
Remaining above-horizon events		36	0.0066	
		Cosmic	-ray candid	
Dan Southall (UChicago)			-	
ean ooanian (oonioago)		event id	lentified (by	

Airplane tracking data obtained from: Bringing up OpenSky: A large-scale ADS-B sensor network for research Matthias Schäfer, Martin Strohmeier, Vincent Lenders, Ivan Martinovic, Matthias Wilhelm ACM/IEEE International Conference on Information Processing in Sensor Networks, April 2014

Cosmic Ray Search with BEACON

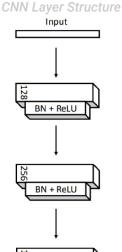
Improving CR Search from RF Using CNNs How to do better?





Improving CR Search from RF Using CNNs How to do better?

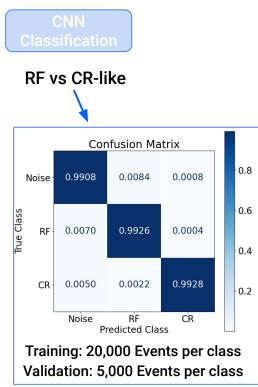
- **Convolutional Neural Networks** (CNN) are deep learning models that can **extract features** of datasets based on weighted parameters determined from training
- Has been applied to Time Series Classification (TSC) many times already
(health care, earthquake detection, finance, etc.)Z. Wang, W. Yan,
T. Oates arXiv:1611.06455

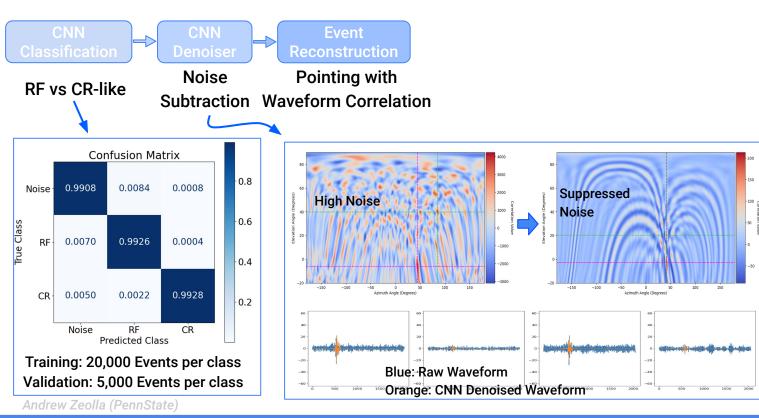


Improving CR Search from RF Using CNNs How to do better?

- **Convolutional Neural Networks** (CNN) are deep learning models that can **extract features** of datasets based on weighted parameters determined from training
- Has been applied to Time Series Classification (TSC) many times already
(health care, earthquake detection, finance, etc.)Z. Wang, W. Yan,
T. Oates arXiv:1611.06455
- So, CNN can be trained with CR simulations & triggered RF data to classify data groups:
 - Force-triggered events (noise) RF-triggered events (background) Cosmic rays (simulated)

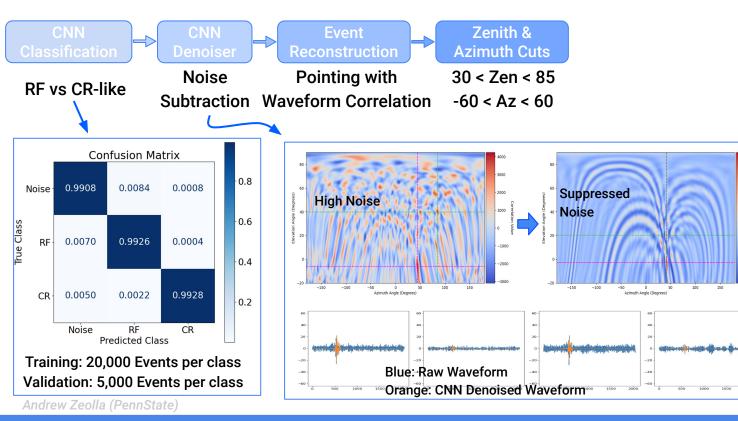
General Example of





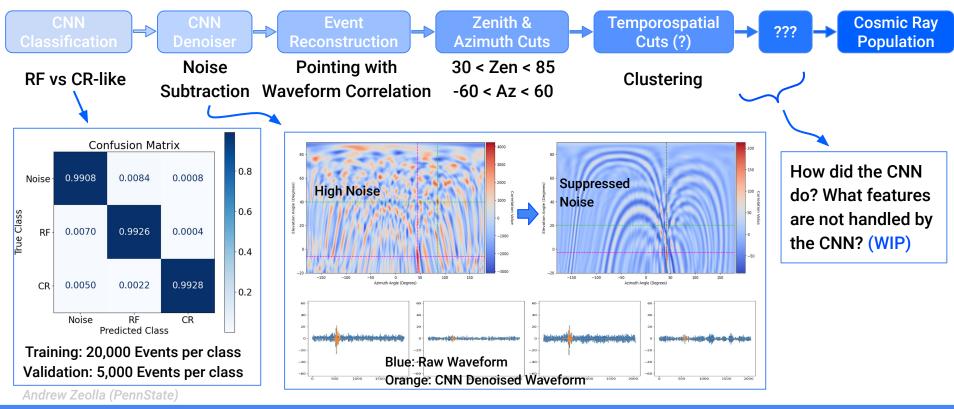
Andrew Zeolla (PennState)

Cosmic Ray Search with BEACON



- 150

CR Search Flow and Results (WIP)


Cosmic Ray Search with BEACON

ARENA 2024

7 of 14

Cosmic Ray Search with BEACON

BEACON 2023 Upgrades

2023 Improved Antennas & DAQ

Antennas

- 4 antennas \rightarrow 6 antennas
- (improved sensitivity & reconstruction)
- Side-mounted T-bar tines (greater strength)

60 -

40

20

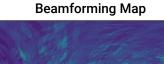
-20 -

-40

-20

Ryan Krebs (PennState)

0


Azimuth (deg)

20

40

60

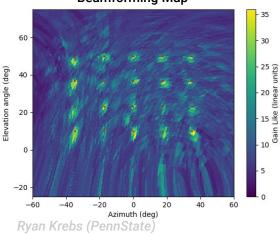
Cosmic Ray Search with BEACON

ARENA 2024

- 35

- 30

5


2023 Improved Antennas & DAQ

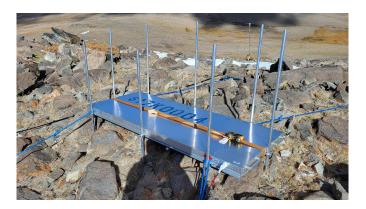
Antennas

- 4 antennas \rightarrow 6 antennas
- (improved sensitivity & reconstruction)
- Side-mounted T-bar tines (greater strength)

DAQ

- 8 channels \rightarrow 16 channels
- Modular FLOWER boards:
 - 8 ch/board, 500 GSa/s, onboard FPGA for phased array triggering
- Coincidence & Beamforming triggers

Eric Oberla (UChicago)


Cosmic Ray Search with BEACON

2023 Independent Scintillator Array

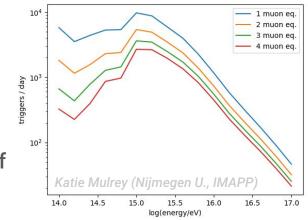
- New independent detector array of scintillators
 - CR population from muon flux
 - Verifies CR detection to assist RF trigger optimization

2023 Independent Scintillator Array

- New independent detector array of scintillators
 - CR population from muon flux
 - Verifies CR detection to assist RF trigger optimization
- Produced by KIT & DESY, and are the analog readout version of IceScint planned for IceTop (<u>PoS(ICRC2017)401</u>)

Scint Panels (B. Hoffmann, M. Oehler) IceCube Collaboration

2023 Independent Scintillator Array


- New independent detector array of scintillators
 - CR population from muon flux
 - Verifies CR detection to assist RF trigger optimization
- Produced by KIT & DESY, and are the analog readout version of IceScint planned for IceTop (<u>PoS(ICRC2017)401</u>)

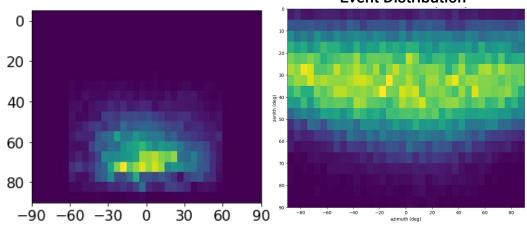
Scint Panels (B. Hoffmann, M. Oehler) IceCube Collaboration

Scint Trigger Rate Distribution

CORSIKA + GEANT-4 particle simulations give order of magnitude estimate trigger rate

Expect 0.1-100 scint events per day in RF-sensitive energy region (extrapolating to 10¹⁹eV)

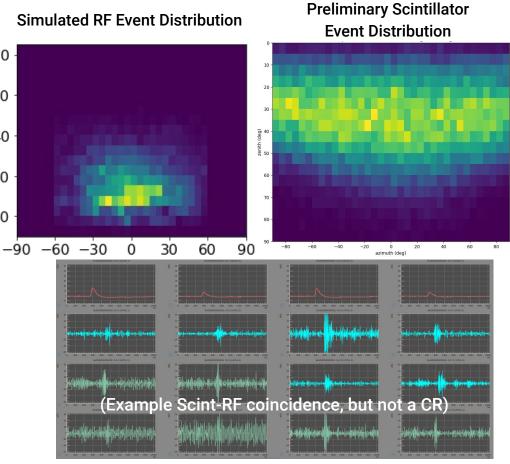
Cosmic Ray Search with BEACON



RF-Scint Expectations

Simulated RF Event Distribution

Preliminary Scintillator Event Distribution



RF-Scint Expectations

RF-Scint event overlap population depend on many aspects:

- High energy events
- Detector directional sensitivities 60
- RF vs Muon flux distributions

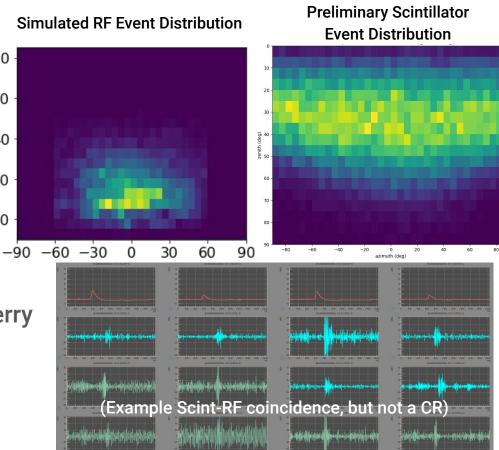
ARENA 2024

0

20

40

80



RF-Scint Expectations

RF-Scint event overlap population depend on many aspects:

- High energy events
- Detector directional sensitivities 60
- RF vs Muon flux distributions

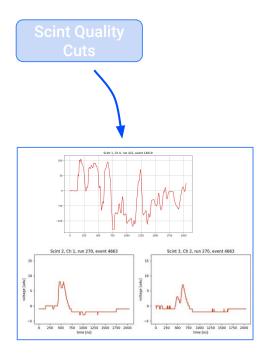
Scintillator implementation into Cranberry simulations will give an expected coincident event rate in both detectors (WIP)

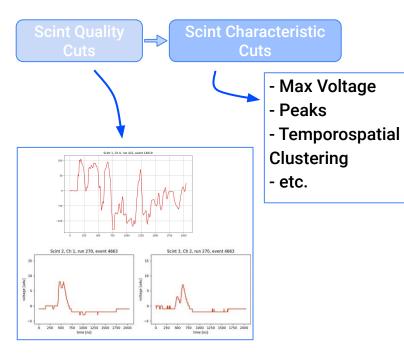
0

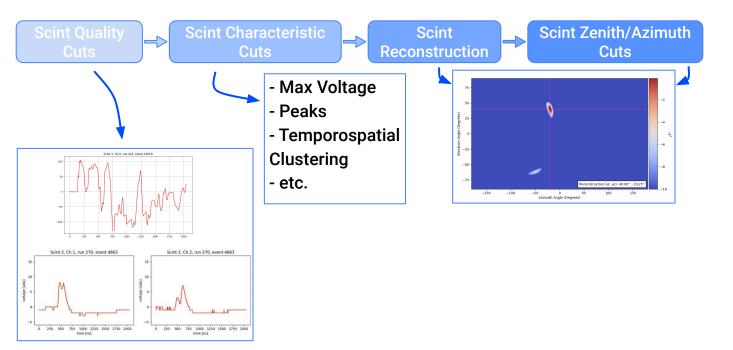
20

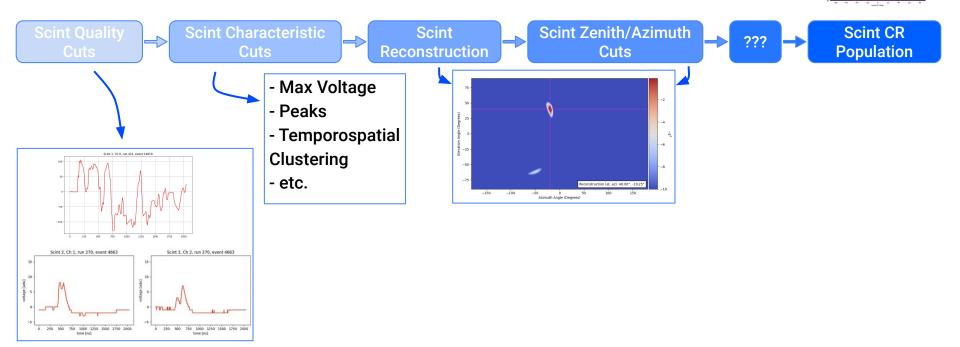
40

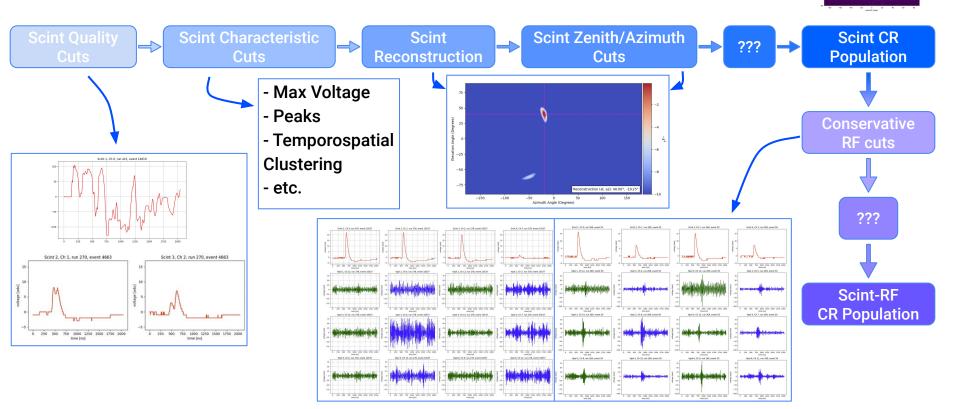
80



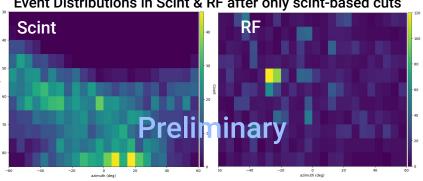








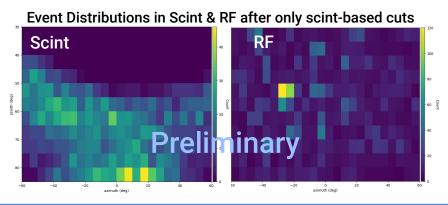
Scintillator CR Search for RF Optimization

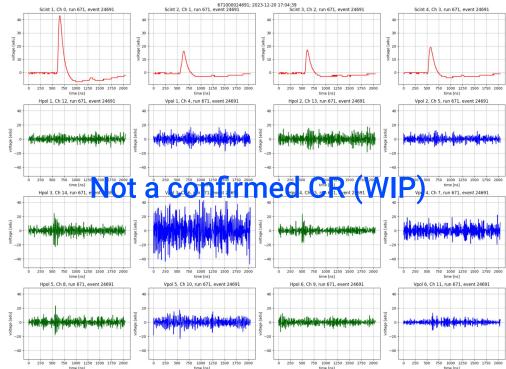

Cosmic Ray Search with BEACON

Preliminary Results

Preliminary Scint & RF cuts result in a few events out of ~70 days of data

Event Distributions in Scint & RF after only scint-based cuts

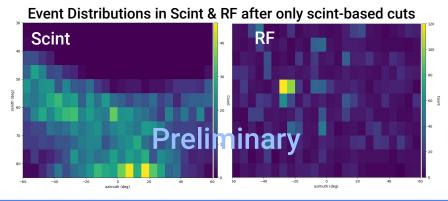

Cosmic Ray Search with BEACON

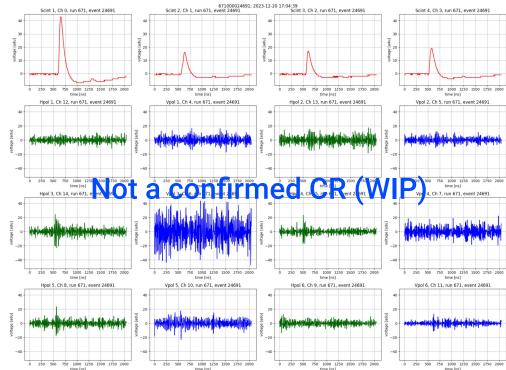


Preliminary Results

Preliminary Scint & RF cuts result in a few events out of ~70 days of data

Cosmic Ray Search with BEACON


BEACON


Preliminary Results

Preliminary Scint & RF cuts result in a few events out of ~70 days of data

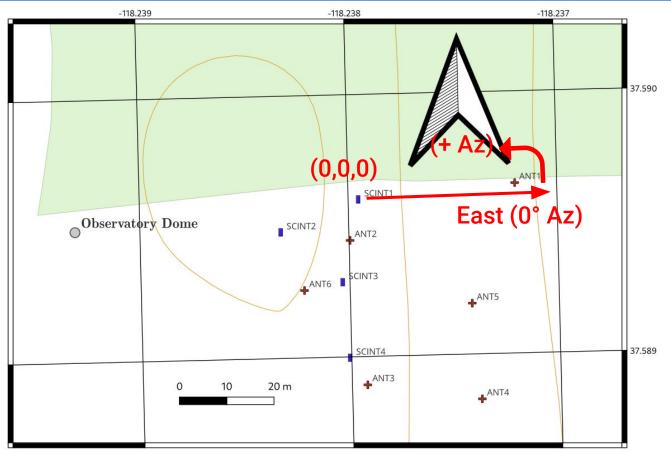
Future:

- Confirm CR in RF using sims
- Iterate on analysis accuracy (backgrounds)
- Optimize RF search w/ RF-Scint CRs

Cosmic Ray Search with BEACON

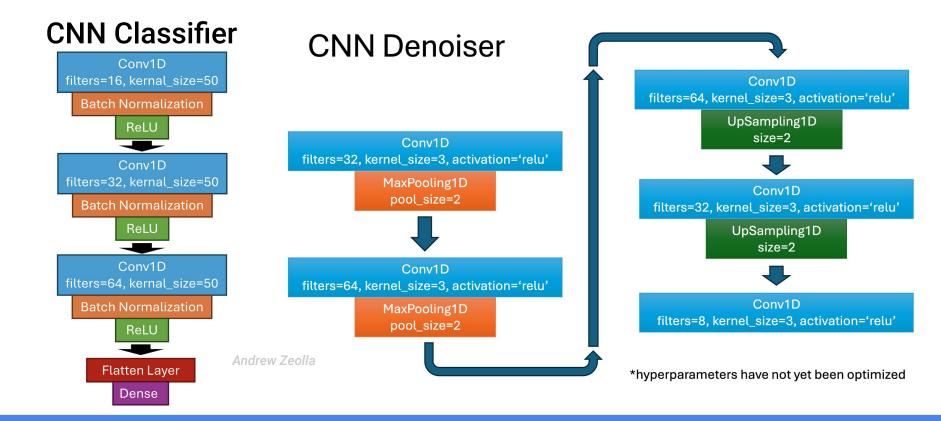
Summary

- BEACON prototype sensitive to impulse events / CRs
- CR search will verify full BEACON sensitivity to $\mathcal{V}\mbox{'s}$
- WIP for search improvements using RF
- WIP using independent scintillator array CR search to optimize RF-only search & trigger



Backup/Extra Slides

Orientation

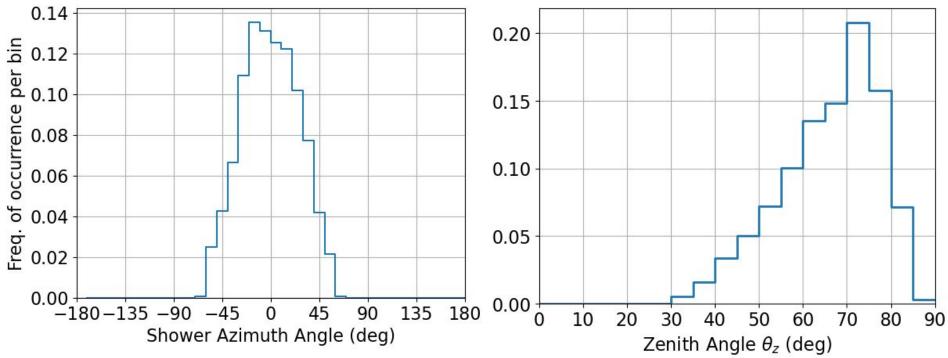


Cosmic Ray Search with BEACON

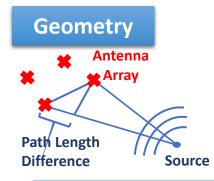
CNN Structures

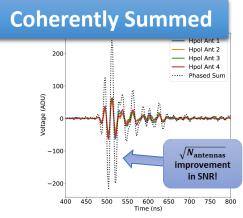
Cosmic Ray Search with BEACON

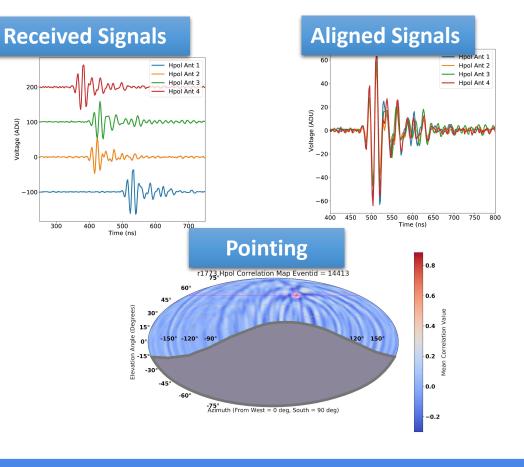
CNN Classification Cut


$p_{\it CR}$ Cutc	Events Remaining	% of Events Cut
0.5	17,092	99.85%
0.75	12,263	99.89%
0.9	9,050	99.92%
0.95	7,452	99.94%
0.99	5,203	99.95%

Andrew Zeolla


RF (Simulated) 1D Distributions




Andrew Zeolla

RF Pointing

ARENA 2024

Cosmic Ray Search with BEACON

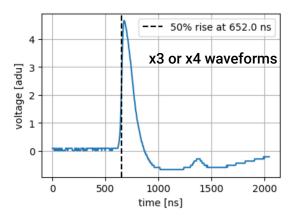
-2

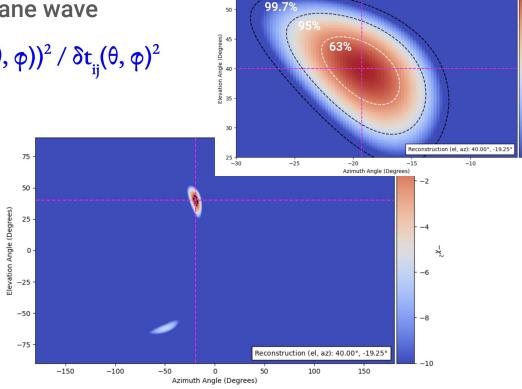
-4 -7 -6

-8

-10

Likelihood curves give confidence


intervals: $exp(-\Box^2/2)$


Scint Pointing

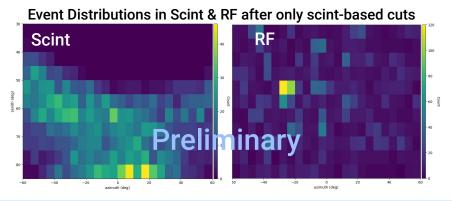
Minimizes 3 or 4 scints fitted to a plane wave

 $\boldsymbol{\chi}(\boldsymbol{\theta},\boldsymbol{\phi})^2 = \boldsymbol{\Sigma}_{ij} (\boldsymbol{t}_{meas,ij}(\boldsymbol{\theta},\boldsymbol{\phi}) - \boldsymbol{t}_{exp,ij}(\boldsymbol{\theta},\boldsymbol{\phi}))^2 / \delta \boldsymbol{t}_{ij}(\boldsymbol{\theta},\boldsymbol{\phi})^2$

Method: $t_{meas,ij}(\theta, \phi) = 50\%$ rise time

55

Cosmic Ray Search with BEACON


Cuts

BEACO

~70 days of data

Scints

- Scint Triggered (4 scints)
- $\chi^2(\theta, \phi) < 1$
- 10 ADU <= Vmax <= 120 ADU (max 127)
- 1 <= Peaks <= 4
- 30 < zenith < 85; -60 < Az < 60
- RF: Recon dist < 20 deg; SNR > 5; Pulse within 200ns

Cosmic Ray Search with BEACON