GRANDProto300: status, prospects and science case

ARENA 2024
Simon Chiche - for the GRAND collaboration

GRANDProto300 in Xiao Dushan

GRANDProto300: A radio array of $\mathcal{O}(300)$ antennas over 200 km²

Located in Xiao Dushan in the Gansu province (China) Flat solid ground in mountainous area Low radio background Average altitude of ~1100m above sea level

The deployment site has been officially approved!

敦煌市自然资源局文件

敦自然资发〔2024〕23号

敦煌市自然资源局 关于大型中微子射电观测站二期子阵项目用地 准予备案的通知

• Hexagonal grid in Argentina & China parsé aigo (measprements,14 camp nser infill (577 m step)

o r=1.226公里

• Energy range $10^{16.5} - 10^{18} \,\mathrm{eV}$

GRANDProto300 in Xiao Dushan

GRANDProto300: A radio array of $\mathcal{O}(300)$ antennas over 200 km²

The deployment site has been officially approved!

敦煌市自然资源局文件

敦自然资发〔2024〕23号

敦煌市自然资源局 关于大型中微子射电观测站二期子阵项目用地 准予备案的通知

• Hexagonal excellent sites ident in Argentina & China parsé aigo (**measprements,14 camp** nser infill (577 m step)

o r=1.226公里

• Energy range $10^{16.5} - 10^{18} \,\mathrm{eV}$

Located in Xiao Dushan in the Gansu province (China)

Flat solid ground in mountainous area

Average altitude of ~1100m above sea level

Low radio background

GRANDProto300 aims at tackling several challenges to validate **GRAND** detection principle

GRANDProto300 aims at tackling several challenges to validate GRAND detection principle

Reconstruction of inclined air showers (Oscar Macias / Lukas Gülzow presentations)

- Inclined air showers are challenging (asymmetries, reflections, ...)
- Detection of very inclined showers with a sparse array: unchartered territory
- Reconstruction algorithms need to be tested

(Schröder 2017)

GRANDProto300 aims at tackling several challenges to validate GRAND detection principle

Reconstruction of inclined air showers (Oscar Macias / Lukas Gülzow presentations)

- Inclined air showers are challenging (asymmetries, reflections, ...)
- Detection of very inclined showers with a sparse array: unchartered territory
- Reconstruction algorithms need to be tested

- GRAND aim to achieve radio detection without external triggers
- Requires to identify air shower signals among the various backgrounds

 Several approaches possible: Neural networks, polarisation signatures, template fitting...
 (Chiche et al. [arXiv:2202.06846], Jelena's talk, Le Coz et al. [ARENA2022]) Pablo's talk

GRANDProto300 aims at tackling several challenges to validate GRAND detection principle

Reconstruction of inclined air showers (Oscar Macias / Lukas Gülzow presentations)

• Inclined air showers are challenging (asymmetries, reflections, ...)

- Detection of very inclined showers with a sparse array: unchartered territory
- Reconstruction algorithms need to be tested

- GRAND aim to achieve radio detection without external triggers
- Requires to identify air shower signals among the various backgrounds

 Several approaches possible: Neural networks, polarisation signatures, template fitting...
 (Chiche et al. [arXiv:2202.06846], Jelena's talk, Le Coz et al. [ARENA2022]) Pablo's talk

(Schröder 2017)

Detector overview

Detector overview

Current status of GRANDProto300

GP13 commissioning

13 antennas deployed in February 2023 in Xiao Dushan!

GP13 commissionina

GP13 commissioning

Beacon reconstruction

The beacon position was reconstructed from trigger times at the antenna level

Preliminary

Beacon reconstruction

The beacon position was reconstructed from trigger times at the antenna level

day

V

GRAND10K

~2030s: extension to the first GRAND sub-array with $10\,000$ antennas (Kumiko's talk)

Expected performances

Layout and expected trigger rate

Explored: Geometrical pattern, step size, ...

geometry	step size of coarse	Nantenna	Nev	$N_{\rm ev}/N_{\rm antenna}$
	λ [m]		$[day^{-1}]$	$[day^{-1}]$
hex	1000	150	192.38	1.28
tri	1000	241	321.77	1.33
island	1000	240	438.40	1.83
flower	1000	264	476.43	1.80
spiral	1000	235	441.15	1.88

Benoit-Lévy, Kotera, Tueros, 2024 (arXiv: 2401.01267)

more efficient to have infill than dense array

tri geometry: marginal gain for large number of antennas required

~250 antennas surface = 204 km² N_{trig} = 5, V_{trig} = 75 muV

Layout and expected trigger rate

Explored: Geometrical pattern, step size, ...

geometry	step size of coarse	Nantenna	Nev	$N_{\rm ev}/N_{\rm antenna}$
	λ [m]		$[day^{-1}]$	$[day^{-1}]$
hex	1000	150	192.38	1.28
tri	1000	241	321.77	1.33
island	1000	240	438.40	1.83
flower	1000	264	476.43	1.80
spiral	1000	235	441.15	1.88

Benoit-Lévy, Kotera, Tueros, 2024 (arXiv: 2401.01267)

more efficient to have infill than dense array

tri geometry: marginal gain for large number of antennas required

~250 antennas surface = 204 km² N_{trig} = 5, V_{trig} = 75 muV

$X_{\rm max}$ and angular reconstruction

(Oscar's presentation)

11

GRANDProto300 science case

Galactic to extragalactic transition

Fast radio bursts

Fast radio bursts: Powerful transient radio pulses with a typical duration of a few ms

- Most FRB detectors have an angular resolution of a few \mbox{arcmin}^2
- GRAND will have a large field of view and high sensitivity: well suited to do FRB searches
 - 2 possible approaches:
 - (1) unphased sum of signals (large FOV nearby FRBs)
 - (2) Beamforming (higher sensitivity)

• Beamforming: Sensitivity $\propto \sqrt{N_{\rm ant}}$

• GP300 detection threshold for a $10\,\sigma$ observation: $\sim 800\,{\rm Jy}$

GP300 could potentially see 1 FRB/month

Ultra-high-energy gamma-rays

Ultra-high-energy gamma-rays ($E > 10^{17} \,\mathrm{eV}$) are guaranteed to exist

Yet, observation is challenging

Limits set by Auger and TA

Ultra-high-energy gamma-rays

Ultra-high-energy gamma-rays ($E > 10^{17} \,\mathrm{eV}$) are guaranteed to exist

infrared/optical X-rays neutrinos radio/microwave gamma-rays cosmic-rays 104 cosmological max of star formation opaque to photons; 10 transparent to neutrinos Distance [Mpc] nearest blazar Still possible if powerful nearest galaxy near-galactic source 10galactic center 10-3 10-4 10-2 10⁰ 10² 104 10⁸ 1010 1012 1014 10¹⁶ 10¹⁸ 10²⁰ 10-6 10⁶ Energy [eV]

Yet, observation is challenging

GP300 could be one of the most sensitive UHE γ -ray experiment if completed with surface detectors

Ultra-high-energy gamma-rays

Ultra-high-energy gamma-rays ($E > 10^{17} \,\mathrm{eV}$) are guaranteed to exist

infrared/optical X-rays neutrinos radio/microwave gamma-rays cosmic-rav 10 cosmological max of star formation opaque to photons; 10 transparent to neutrinos Distance [Mpc] nearest blazar Still possible if powerful nearest galaxy near-galactic source 10 galactic center 10-10-2 10⁸ 1010 1012 1014 10¹⁸ 1020 10-6 10-4 10⁰ 10² 104 1016 Energy [eV]

Yet, observation is challenging

GP300 could be one of the most sensitive UHE γ -ray experiment if completed with surface detectors

- \bullet EM/ μon ratio is one of the best observables for mass composition studies
- Radio antennas measure the EM energy
- For inclined showers, surface detectors yield a precise measurement of the muon content

Summary

GRANDProto300: radio array of 300 antennas in the Gobi desert detecting cosmic-rays (and gamma-rays?) between $10^{16.5} - 10^{18} \, eV$

13 antennas were deployed and 83 should be deployed by Fall 2024

First data were taken and reconstructed events should follow!

Successful collaboration meeting in Nanjing! (May 2024)